Home
Class 12
MATHS
Minimize z=sum(j=1)^(n)" "sum(i=1)^(m)c...

Minimize `z=sum_(j=1)^(n)" "sum_(i=1)^(m)c_("ij ")x_("ij")`
Subject to : `sum_(j=1)^(n)x_("ij")=a_(i),i=1,..........,m`
`sum_(i=1)^(n)x_("ij")=b_(i),j=1,..........,n`
is a LPP with number of constraints

A

m + n

B

`m - n `

C

mn

D

`(m)/(n)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    TARGET PUBLICATION|Exercise Evaluation Test|11 Videos
  • LINEAR PROGRAMMING

    TARGET PUBLICATION|Exercise Critical Thinking|28 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos

Similar Questions

Explore conceptually related problems

sum_(j=1)^(n)sum_(i=1)^(n)i=

Minimise Z=sum_(j=1)^(n)sum_(i=1)^(m)c_(ij)x_(ij) Subject to sum_(i=1)^(m)x_(ij)=b_(j),j=1,2,....,n sum_(j=1)^(n)x_(ij)=b_(j),i=1,2,... is a LPP with number of constraints

S=sum_(i=1)^(n)sum_(j=1)^(i)sum_(k=1)^(j)1

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

sum_(i=0)^(n)sum_(j=0)^(m)*^(n)C_(i)*C_(j) is equal to

Find the sum sum_(j=0)^(11)sum_(i=j)^(11)([ij])

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

TARGET PUBLICATION-LINEAR PROGRAMMING-Competitive Thinking
  1. Non - negative constraints for an LPP should be

    Text Solution

    |

  2. LPP includes

    Text Solution

    |

  3. Minimize z=sum(j=1)^(n)" "sum(i=1)^(m)c("ij ")x("ij") Subject to ...

    Text Solution

    |

  4. The optimal value of the objective function is attained at the points

    Text Solution

    |

  5. Which of the terms is not used in a linear programming problem

    Text Solution

    |

  6. The area of the feasible region for the following constraints 3y+xge3...

    Text Solution

    |

  7. The constraints -x(1)+x(2)lt 1, -x(1)+3x(2)le9, x(1), x(2)gt, 0 difine...

    Text Solution

    |

  8. Inequations 3x-yge3 and 4x - y gt 4

    Text Solution

    |

  9. The objective function of LLP defined over the convex set attains its ...

    Text Solution

    |

  10. If an LPP admits optimal solution at two consecutive vertices of a joi...

    Text Solution

    |

  11. The maximum value of P = 3x +4y subject to the constraints x+yle40,2yl...

    Text Solution

    |

  12. If 4x+5yle20,x+yge3,xge0,yge0 maximum 2x + 3y is

    Text Solution

    |

  13. The maximum of z = 5x+2y , subject to the constrainsts x+yle7,x+2yle1...

    Text Solution

    |

  14. The maximum value of 2x+y subject to 3x+5yle26and5x+3yle30,xge0,yge0...

    Text Solution

    |

  15. By graphical method, the solutions of linear programming problem maxim...

    Text Solution

    |

  16. The maximum value of 4x +5y subject to the constraints x+yle20,x+2yle...

    Text Solution

    |

  17. Max value of z equal 3x + 2y subject to x+yle3,xle2,-2x+yle1,xge0,yge...

    Text Solution

    |

  18. The point at which , the maximum value of (3x+2y) subject to the const...

    Text Solution

    |

  19. The point which provides the solution of the linear programming proble...

    Text Solution

    |

  20. The points which provides the solution to the linear programming probl...

    Text Solution

    |