Home
Class 12
MATHS
The minimum value of z=2z(1)+3x-(2) subj...

The minimum value of `z=2z_(1)+3x-(2)` subjected to the constraints `2x_(1)+7x_(2)ge22,x_(1)+x_(2)ge6,5x_(1)+x_(2)ge10` and `x_(1),x_(2)ge0`, is

A

14

B

20

C

10

D

16

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    TARGET PUBLICATION|Exercise Evaluation Test|11 Videos
  • LINEAR PROGRAMMING

    TARGET PUBLICATION|Exercise Critical Thinking|28 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos

Similar Questions

Explore conceptually related problems

The minimum value of z=2x_(1)+3x_(2) subjected to the constraints 2x_(1)+7x_(2)ge22,x_(1)+x_(2)ge6,5x_(1)+x_(2)ge10 and x_(1),x_(2)ge0 , is

The minimum vlaue Z = 2x_1 +3x_2 subject to the conditions 2x_1+7x_2ge22, x_1+x_2ge 6, 5x_1 +x_2 ge 10 and x_1, x_2 ge 0 is

Minimize z = -x_(1) + 2x_(2) Subject to -x_(1) + 3x_(2) le 10 x_(1) + x_(2) le 6 x_(1) - x_(2) le 2 and x_(1), x_(2) ge 0

The minimum value of Z= 4x+5y subject to the constraints x le 30, yle 40 and x ge 0,y ge 0 is

By graphical method, the solutions of linear programming problem maximise Z=3x_(1)+5x_(2) subject to constraints 3x_(1)+2x_(2) le 18, x_(1) le 4, x_(2) le 6 x_(1) ge0,x_(2) ge 0 are

The minimum value of Z = 4x + 5y subjected to the constraints x + y ge 6, 5x + y ge 10 , x ge 0, y ge 0 is

The linear programming problem : Maximize z=z=x_(1)+x_(2) subject to constraints x_(1)+2x_(2)le2000,x_(1)+x_(2)le1500,x_(2)le600,x_(1)ge0 has

TARGET PUBLICATION-LINEAR PROGRAMMING-Competitive Thinking
  1. The maximum value of 2x+y subject to 3x+5yle26and5x+3yle30,xge0,yge0...

    Text Solution

    |

  2. By graphical method, the solutions of linear programming problem maxim...

    Text Solution

    |

  3. The maximum value of 4x +5y subject to the constraints x+yle20,x+2yle...

    Text Solution

    |

  4. Max value of z equal 3x + 2y subject to x+yle3,xle2,-2x+yle1,xge0,yge...

    Text Solution

    |

  5. The point at which , the maximum value of (3x+2y) subject to the const...

    Text Solution

    |

  6. The point which provides the solution of the linear programming proble...

    Text Solution

    |

  7. The points which provides the solution to the linear programming probl...

    Text Solution

    |

  8. The corner points of the feasible region determined by the system of l...

    Text Solution

    |

  9. The corner points of the feasible region determined by the system of l...

    Text Solution

    |

  10. The minimum value of z=2z(1)+3x-(2) subjected to the constraints 2x(1)...

    Text Solution

    |

  11. The minimum value of the objective function Z=2x+10y for linear const...

    Text Solution

    |

  12. For the following linear programming problem minimize Z=4x+6y subject ...

    Text Solution

    |

  13. The co-ordinates of the point for minimum value z = 7x - 8y subject ...

    Text Solution

    |

  14. Minimise and Maximise Z=5x+10y Subject to x+2yle120,x+yge60,x-2yge0,...

    Text Solution

    |

  15. The objective function, z=4x(1)+5x(2), subject to 2x(1)+x(2)ge7,2x(1)+...

    Text Solution

    |

  16. The objective function z = x1 + x2, subject to x1 + x2 leq 10,-2x1 + 3...

    Text Solution

    |

  17. Minimize z = 30x+20y subject to x+yle8,x+2yge4,6x+4yge12,xge,yge0

    Text Solution

    |

  18. The maximum value of z = 4x +3y subject to the constraints 3x+2yge160...

    Text Solution

    |

  19. For the LPP , maximize z = x + 4y subject to the constraints x+2yle2,...

    Text Solution

    |

  20. The maximum value of z = 4x +2y subject to the constraints 2x+3yle18,x...

    Text Solution

    |