Home
Class 12
MATHS
The objective function, z=4x(1)+5x(2), s...

The objective function, `z=4x_(1)+5x_(2),` subject to `2x_(1)+x_(2)ge7,2x_(1)+3x_(2)le15,x_(2)le3,x_(1),x_(2)ge0` has minimum value at the point

A

On X - axis

B

On Y - axis

C

At the origin

D

On the line parallel to X - axis

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    TARGET PUBLICATION|Exercise Evaluation Test|11 Videos
  • LINEAR PROGRAMMING

    TARGET PUBLICATION|Exercise Critical Thinking|28 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos

Similar Questions

Explore conceptually related problems

The objective function Z=4x_(1) +5x_(2) , Subject to 2x_(1) +x_(2) ge 7,2x_(1)+3x_(2) le 15,x_(2)le 3, x_(1),x_(2)ge 0 has minimum value at the point

The objective function Z=x_(1)+x_(2), subject to x_(1) +x_(2) le 10 , - 2x _(1) +3x_(2)le 15, x x_(1) le 6,x_(1),x_(2) ge 0 has maximum value ________ of the feasible region .

The LPP problem Max z=x_(1)+x_(2) such that -2x_(1)+x_(2)le1,x_(1)le2,x_(1)+x_(2)le3 and x_(1),x_(2)ge0 has

Maximize z = -x_(1) + 2x_(2) Subject to -x_(1) + x_(2) le 1 -x_(1) + 2x_(2) le 4 x_(1), x_(2) le 0

Maximize z = 5x_(1) + 3x_(2) Subject to 3x_(1) + 5x_(2) le 15 5x_(1) + 2x_(2) le 10 x_(1), x_(2) ge 0

Maximize z = x_(1) + 3x_(2) Subject to 3x_(1) + 6x_(2) le 8 5x_(1) + 2x_(2) le 10 and x_(1), x_(2) ge 0

For L.P.P. maximize z = 4x_(1) + 2X_(2) subject to 3x_(1) + 2x_(2) ge 9, x_(1) - x_(2) le 3,x_(1) ge 0, x_(2) ge 0 has ……

Minimize z = -x_(1) + 2x_(2) Subject to -x_(1) + 3x_(2) le 10 x_(1) + x_(2) le 6 x_(1) - x_(2) le 2 and x_(1), x_(2) ge 0

The minimum value of z=2x_(1)+3x_(2) subjected to the constraints 2x_(1)+7x_(2)ge22,x_(1)+x_(2)ge6,5x_(1)+x_(2)ge10 and x_(1),x_(2)ge0 , is

TARGET PUBLICATION-LINEAR PROGRAMMING-Competitive Thinking
  1. The maximum value of 2x+y subject to 3x+5yle26and5x+3yle30,xge0,yge0...

    Text Solution

    |

  2. By graphical method, the solutions of linear programming problem maxim...

    Text Solution

    |

  3. The maximum value of 4x +5y subject to the constraints x+yle20,x+2yle...

    Text Solution

    |

  4. Max value of z equal 3x + 2y subject to x+yle3,xle2,-2x+yle1,xge0,yge...

    Text Solution

    |

  5. The point at which , the maximum value of (3x+2y) subject to the const...

    Text Solution

    |

  6. The point which provides the solution of the linear programming proble...

    Text Solution

    |

  7. The points which provides the solution to the linear programming probl...

    Text Solution

    |

  8. The corner points of the feasible region determined by the system of l...

    Text Solution

    |

  9. The corner points of the feasible region determined by the system of l...

    Text Solution

    |

  10. The minimum value of z=2z(1)+3x-(2) subjected to the constraints 2x(1)...

    Text Solution

    |

  11. The minimum value of the objective function Z=2x+10y for linear const...

    Text Solution

    |

  12. For the following linear programming problem minimize Z=4x+6y subject ...

    Text Solution

    |

  13. The co-ordinates of the point for minimum value z = 7x - 8y subject ...

    Text Solution

    |

  14. Minimise and Maximise Z=5x+10y Subject to x+2yle120,x+yge60,x-2yge0,...

    Text Solution

    |

  15. The objective function, z=4x(1)+5x(2), subject to 2x(1)+x(2)ge7,2x(1)+...

    Text Solution

    |

  16. The objective function z = x1 + x2, subject to x1 + x2 leq 10,-2x1 + 3...

    Text Solution

    |

  17. Minimize z = 30x+20y subject to x+yle8,x+2yge4,6x+4yge12,xge,yge0

    Text Solution

    |

  18. The maximum value of z = 4x +3y subject to the constraints 3x+2yge160...

    Text Solution

    |

  19. For the LPP , maximize z = x + 4y subject to the constraints x+2yle2,...

    Text Solution

    |

  20. The maximum value of z = 4x +2y subject to the constraints 2x+3yle18,x...

    Text Solution

    |