Home
Class 12
MATHS
int7e^(7x+5)dx=...

`int7e^(7x+5)dx`=

A

`7(7e^(7x+5))+c`

B

`(7(e^(7x+5)))/5+c`

C

`e^(7x+5)+c`

D

`(7e^(7x+5))/((7x+5))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int 7 e^{7x + 5} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the expression inside the integral: \[ \int 7 e^{7x + 5} \, dx = \int 7 e^{7x} e^{5} \, dx \] Since \( e^5 \) is a constant, we can factor it out of the integral. ### Step 2: Factor Out the Constant Now, we can factor out the constant \( 7 e^5 \): \[ = 7 e^5 \int e^{7x} \, dx \] ### Step 3: Integrate the Exponential Function Next, we need to integrate \( e^{7x} \). The integral of \( e^{nx} \) is given by: \[ \int e^{nx} \, dx = \frac{e^{nx}}{n} + C \] In our case, \( n = 7 \), so we have: \[ \int e^{7x} \, dx = \frac{e^{7x}}{7} + C \] ### Step 4: Substitute Back into the Integral Now we substitute this result back into our expression: \[ = 7 e^5 \left( \frac{e^{7x}}{7} + C \right) \] ### Step 5: Simplify the Expression The \( 7 \) in the numerator and denominator cancels out: \[ = e^5 e^{7x} + 7 e^5 C \] We can simplify this to: \[ = e^{7x + 5} + C' \] where \( C' = 7 e^5 C \) is just another constant. ### Final Answer Thus, the final result of the integral is: \[ \int 7 e^{7x + 5} \, dx = e^{7x + 5} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int e^(2x+7)dx

int1/(7x+5)dx

int(7^(5x+9))dx

int(7x-2)^(-5)dx

int(7x-6)^5dx

int(7x-2)^3dx

Q.int x^(7)dx

int cos^(7) x dx

int(3x+5)^(7)dx

int1/(7x^2-8)dx