Home
Class 12
MATHS
The value of int(dx)/sqrt(1-x) is...

The value of `int(dx)/sqrt(1-x)` is

A

`2sqrt(1-x)+c`

B

`-2sqrt(1-x)+c`

C

`-sin^(-1)sqrt(x)+c`

D

`sin^(-1)sqrt(x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{\sqrt{1-x}}\), we can follow these steps: ### Step 1: Substitution Let \( t = 1 - x \). Then, we differentiate both sides: \[ dt = -dx \quad \Rightarrow \quad dx = -dt \] ### Step 2: Rewrite the Integral Substituting \( t \) and \( dx \) into the integral, we get: \[ \int \frac{dx}{\sqrt{1-x}} = \int \frac{-dt}{\sqrt{t}} = -\int \frac{dt}{\sqrt{t}} \] ### Step 3: Integrate The integral \(-\int \frac{dt}{\sqrt{t}}\) can be solved as follows: \[ -\int t^{-\frac{1}{2}} dt = -\left(2t^{\frac{1}{2}}\right) + C = -2\sqrt{t} + C \] ### Step 4: Back Substitute Now, we substitute back \( t = 1 - x \): \[ -2\sqrt{t} + C = -2\sqrt{1-x} + C \] ### Final Answer Thus, the value of the integral is: \[ \int \frac{dx}{\sqrt{1-x}} = -2\sqrt{1-x} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

The value of int(2dx)/sqrt(1-4x^(2)) is

The value of int (dx)/(sqrt (a-x))

The value of int(dx)/(x(sqrt(1-x^(3)))) is equal to

The value of int(dx)/((1+sqrt(x))(sqrt(x-x^(2)))) is equal to

int(dx)/(sqrt(x)-1)

The value of int_(0)^(1) sqrt((1-x)/(1+x))dx is

The value of int log(sqrt(1-x)+sqrt(1+x))dx, is equal to