Home
Class 12
MATHS
If f(x)=(x^(2)-1)/x^(3), then intf(x)dx ...

If `f(x)=(x^(2)-1)/x^(3)`, then `intf(x)dx` is

A

`1/x^(2)+1/(2x^(3))+c`

B

`logx+1/(2x^(2))+c`

C

`-1/x^(2)+3/x^(4)+c`

D

`logx+1/(2x^(3))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral of the function \( f(x) = \frac{x^2 - 1}{x^3} \), we will follow these steps: ### Step 1: Rewrite the function We start by simplifying the function: \[ f(x) = \frac{x^2 - 1}{x^3} = \frac{x^2}{x^3} - \frac{1}{x^3} = \frac{1}{x} - \frac{1}{x^3} \] ### Step 2: Set up the integral Now we can set up the integral: \[ \int f(x) \, dx = \int \left( \frac{1}{x} - \frac{1}{x^3} \right) dx \] ### Step 3: Integrate each term separately We will integrate each term separately: 1. The integral of \( \frac{1}{x} \) is \( \ln |x| \). 2. The integral of \( -\frac{1}{x^3} \) can be rewritten as \( -x^{-3} \). The integral of \( -x^{-3} \) is: \[ \int -x^{-3} \, dx = \frac{-x^{-2}}{-2} = \frac{1}{2x^2} \] ### Step 4: Combine the results Now we combine the results of the integrals: \[ \int f(x) \, dx = \ln |x| + \frac{1}{2x^2} + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int f(x) \, dx = \ln |x| + \frac{1}{2x^2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : If f((3x-4)/(3x+4))=x+2 , then intf(x)dx is equal to (2)/(3)x-(8)/(3)log|x-1|+c . and STATEMENT-2 : If f((3x-4)/(3x+4))=x+2 , then f(x)=(2)/(3)-(8)/(3(x-1)) .

If f(x)=x, g(x)=sinx, then intf[g(x)]dx is equal to

If g(x)=(f(x)-f(-x))/2 defined over [-3,3] f(x)=2x^(2)-4x+1 , then int_(-3)^(3)g(x)dx is equal to

If intf(x)dx=g(x), then intf(x)g(x)dx is equal to

If intf(x)dx=g(x), then : intf^(-1)(x)dx=

If intf(x)dx=g(x),then intx^(11)f(x^(6))dx is equal to

Let f(x)=(9^(x))/(9^(x)+3) Let h(x)=intf(x)dx . If h(log_(9)6)=1 , then h(x)=

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

If intf(x)dx=F(x), then int(f(x))/(F'(x))dx=