Home
Class 12
MATHS
int1/x^(2)(2x+1)^(3)dx=...

`int1/x^(2)(2x+1)^(3)dx=`

A

`4x^(2)+12x+6logx-1/x+c`

B

`4x^(2)+12x-6logx-2/x+c`

C

`2x^(2)+8x+3logx-2/x+c`

D

`8x^(2)+6x+6logx+2/x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x^2 (2x + 1)^3} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1}{x^2 (2x + 1)^3} \, dx \] ### Step 2: Expand the Denominator We can expand \( (2x + 1)^3 \) using the binomial theorem: \[ (2x + 1)^3 = 8x^3 + 12x^2 + 6x + 1 \] Thus, we can rewrite our integral as: \[ \int \frac{1}{x^2 (8x^3 + 12x^2 + 6x + 1)} \, dx \] ### Step 3: Simplify the Expression Now we can separate the terms in the denominator: \[ \int \left( \frac{8x^3}{x^2} + \frac{12x^2}{x^2} + \frac{6x}{x^2} + \frac{1}{x^2} \right)^{-1} \, dx = \int \left( 8x + 12 + \frac{6}{x} + \frac{1}{x^2} \right)^{-1} \, dx \] ### Step 4: Rewrite the Integral We can rewrite the integral as: \[ \int \left( 8x + 12 + \frac{6}{x} + \frac{1}{x^2} \right)^{-1} \, dx \] ### Step 5: Integrate Each Term Now we can integrate each term separately: \[ \int \left( 8x + 12 + \frac{6}{x} + \frac{1}{x^2} \right)^{-1} \, dx = \int 8x \, dx + \int 12 \, dx + \int \frac{6}{x} \, dx + \int \frac{1}{x^2} \, dx \] Calculating each integral: 1. \( \int 8x \, dx = 4x^2 + C_1 \) 2. \( \int 12 \, dx = 12x + C_2 \) 3. \( \int \frac{6}{x} \, dx = 6 \ln |x| + C_3 \) 4. \( \int \frac{1}{x^2} \, dx = -\frac{1}{x} + C_4 \) ### Step 6: Combine the Results Combining all the results, we have: \[ 4x^2 + 12x + 6 \ln |x| - \frac{1}{x} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{x^2 (2x + 1)^3} \, dx = 4x^2 - \frac{1}{x} + 12x + 6 \ln |x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int1/x^(3/2)dx

int1/(x^(2)-x^(3))dx=

int1/((x^(2)+1)^(2)) dx=…

int(1)/((1-2x)^(3))dx

Evaluate: (i) int(3x+1)/((3x^(2)+2x+1)^(3))dx (ii) int sin^(3)x cos xdx

int_1^2(x+1)/(x^3)dx=?

int_1^3(x^2)/(x^3+1)dx=?

int(x^(2)+1)/((x^(2)-1)^(3))dx=

int(2x-1)^(1/3)dx

int1/x^(3)[logx^(x)]^(2)dx=