Home
Class 12
MATHS
int((sqrt(x)+root(3)(x^(2)))^(2))/x dx=...

`int((sqrt(x)+root(3)(x^(2)))^(2))/x dx=`

A

`x+12/7x^(7/6)+3/4x^(4/3)+c`

B

`(2x^(3/2))/3+(3x^(7/3))/7+c`

C

`x+4/5x^(5/6)+c`

D

`x+12/5x^(5/6)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{(\sqrt{x} + \sqrt[3]{x^2})^2}{x} \, dx \), we will follow these steps: ### Step 1: Expand the expression First, we expand the expression \( (\sqrt{x} + \sqrt[3]{x^2})^2 \) using the formula \( (a + b)^2 = a^2 + b^2 + 2ab \). \[ (\sqrt{x})^2 + (\sqrt[3]{x^2})^2 + 2(\sqrt{x})(\sqrt[3]{x^2}) \] Calculating each term: - \( (\sqrt{x})^2 = x \) - \( (\sqrt[3]{x^2})^2 = x^{\frac{2}{3}} \) - \( 2(\sqrt{x})(\sqrt[3]{x^2}) = 2 \cdot x^{\frac{1}{2}} \cdot x^{\frac{2}{3}} = 2x^{\frac{1}{2} + \frac{2}{3}} = 2x^{\frac{3}{6} + \frac{4}{6}} = 2x^{\frac{7}{6}} \) Thus, we have: \[ (\sqrt{x} + \sqrt[3]{x^2})^2 = x + x^{\frac{2}{3}} + 2x^{\frac{7}{6}} \] ### Step 2: Rewrite the integral Now, substitute this back into the integral: \[ \int \frac{x + x^{\frac{2}{3}} + 2x^{\frac{7}{6}}}{x} \, dx \] This simplifies to: \[ \int \left(1 + x^{-\frac{1}{3}} + 2x^{\frac{1}{6}}\right) \, dx \] ### Step 3: Integrate term by term Now we can integrate each term separately: 1. The integral of \( 1 \) is \( x \). 2. The integral of \( x^{-\frac{1}{3}} \) is: \[ \frac{x^{-\frac{1}{3} + 1}}{-\frac{1}{3} + 1} = \frac{x^{\frac{2}{3}}}{\frac{2}{3}} = \frac{3}{2} x^{\frac{2}{3}} \] 3. The integral of \( 2x^{\frac{1}{6}} \) is: \[ 2 \cdot \frac{x^{\frac{1}{6} + 1}}{\frac{1}{6} + 1} = 2 \cdot \frac{x^{\frac{7}{6}}}{\frac{7}{6}} = \frac{12}{7} x^{\frac{7}{6}} \] ### Step 4: Combine the results Combining all the results, we have: \[ \int \frac{(\sqrt{x} + \sqrt[3]{x^2})^2}{x} \, dx = x + \frac{3}{2} x^{\frac{2}{3}} + \frac{12}{7} x^{\frac{7}{6}} + C \] ### Final Answer Thus, the final answer is: \[ x + \frac{3}{2} x^{\frac{2}{3}} + \frac{12}{7} x^{\frac{7}{6}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(x)+root(3)(x))

int root(3)(x^(2))dx

int(1)/(root(3)(x^(2)))dx

If int(sqrt(1+root(3)(x)))/(x^(2/3))dx=K(f(x))^(n/k)+C then

int(1+sqrt(x))/(1+root(3)(x))dx

int(dx)/(sqrt(x+2)+root6(x+2))=

int(dx)/(sqrt(x)(2+sqrt(x)))

."int root(3)(x^(2))dx=?

int(dx)/(sqrt((a^(2)-x^(2))^(3)))