Home
Class 12
MATHS
int(cos(x/2)-sin(x/2))^(2)dx=...

`int(cos(x/2)-sin(x/2))^(2)dx=`

A

`x+cosx+c`

B

`2cos^(2)(x/2)+c`

C

`1/3(cos(x/2)-x/2)^(3)+c`

D

`x-cosx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \right)^2 \, dx \), we can follow these steps: ### Step 1: Expand the integrand We start by expanding the expression \( \left( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \right)^2 \). Using the identity \( (A - B)^2 = A^2 - 2AB + B^2 \), we have: \[ \left( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \right)^2 = \cos^2\left(\frac{x}{2}\right) - 2 \cos\left(\frac{x}{2}\right) \sin\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) \] ### Step 2: Simplify the expression Now, we can simplify the expression using the Pythagorean identity: \[ \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) = 1 \] Thus, the expression simplifies to: \[ 1 - 2 \cos\left(\frac{x}{2}\right) \sin\left(\frac{x}{2}\right) \] ### Step 3: Use the double angle identity We can use the double angle identity for sine: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] In our case, \( \theta = \frac{x}{2} \), so: \[ 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) = \sin(x) \] Thus, we rewrite the integrand: \[ 1 - \sin(x) \] ### Step 4: Integrate the simplified expression Now we can integrate: \[ \int (1 - \sin(x)) \, dx \] This can be split into two separate integrals: \[ \int 1 \, dx - \int \sin(x) \, dx \] Calculating these integrals: 1. \( \int 1 \, dx = x \) 2. \( \int \sin(x) \, dx = -\cos(x) \) Putting it all together: \[ \int (1 - \sin(x)) \, dx = x + \cos(x) + C \] ### Final Answer Thus, the final answer is: \[ \int \left( \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \right)^2 \, dx = x + \cos(x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(cos((x)/(2))-sin((x)/(2)))^2dx=

Find int(cos^(2)2x-sin^(2)2x)dx

int(cos x)/(sin^(2)x)dx

int(cos x)/(sin^(2)x)dx

Evaluate : (i) int(cos2x+2sin^(2)x)/(sin^(2)x)dx (ii) int(2cos^(2)x-cos2x)/(cos^(2)x)dx

int(cos x-sin x)^(2)dx

(i) int (cos x-sin x)/sqrt(1+ sin 2x) dx (ii) int (cos x) /((cos (x/2)+sin (x/2))) dx

int(cos2x)/(sin^(2)xcos^(2)x)dx=

int(cos x-sin x)/(1+sin2x)dx

int x cos^(3)x^(2)*sin x^(2)dx