Home
Class 12
MATHS
int(sin2x)/(1+sin^(2)x)dx=...

`int(sin2x)/(1+sin^(2)x)dx=`

A

`log(sin2x)+c`

B

`log(1+sin^(2)x)+c`

C

`1/2log(1+sin^(2)x)+c`

D

`tan^(-1)(sinx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin(2x)}{1 + \sin^2(x)} \, dx \), we can use the substitution method. Here’s a step-by-step solution: ### Step 1: Identify the substitution We notice that the derivative of \( 1 + \sin^2(x) \) involves \( \sin(2x) \). Therefore, we can let: \[ t = 1 + \sin^2(x) \] ### Step 2: Differentiate the substitution Next, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 0 + 2\sin(x)\cos(x) = \sin(2x) \] Thus, we can express \( dt \) as: \[ dt = \sin(2x) \, dx \] ### Step 3: Rewrite the integral Now we can rewrite the integral in terms of \( t \): \[ \int \frac{\sin(2x)}{1 + \sin^2(x)} \, dx = \int \frac{\sin(2x)}{t} \cdot \frac{dt}{\sin(2x)} = \int \frac{1}{t} \, dt \] ### Step 4: Integrate The integral of \( \frac{1}{t} \) is: \[ \int \frac{1}{t} \, dt = \ln |t| + C \] ### Step 5: Substitute back Now we substitute back \( t = 1 + \sin^2(x) \): \[ \ln |1 + \sin^2(x)| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sin(2x)}{1 + \sin^2(x)} \, dx = \ln(1 + \sin^2(x)) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(sin x)/(1-sin^(2)x)dx

int(sin x)/(1-sin^(2)x)dx

int(sin2x)/(a+b sin^(2)x)dx

int (sin 2x)/(1+sin^2x)dx=

int(sin2x)/(1+cos^(2)x)dx

int(sin2x)/(1+cos^(2)x)dx=

int(sin^(2)x)/(1+sin^(2)x)dx

" 4.(i) "int(sin x)/(1-sin^(2)x)dx

int(sin4x)/(1+sin^(4)2x)dx=