Home
Class 12
MATHS
int1/(loga)(a^(x)cosa^(x))dx=...

`int1/(loga)(a^(x)cosa^(x))dx=`

A

`sina^(x)+c`

B

`a^(x)sina^(x)+c`

C

`1/((loga)^(2))sina^(x)+c`

D

`log(sina^(x))+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int1/(cos(x+a)cos(x+b))dx

int1/x^(3)[logx^(x)]^(2)dx=

int1/((e^(2x)+e^(-2x))^(2))dx=

int1/(a+be^(x))dx=

int1/((x-1)sqrt(x^(2)-4))dx=

int1/(x(1-logx)^(2))dx=

Evaluate: int1/(sin^4x+cos^4x)\ dx

Evaluate: int1/((x+1)^2(x^2+1))\ dx

int1/(1+cos^(2)x)dx=

If int1/((1+x)sqrt(x))dx=f(x)+A , where A is any arbitrary constant, then the function f(x) is