Home
Class 12
MATHS
int(log(logx))/(x.logx)dx=...

`int(log(logx))/(x.logx)dx=`

A

`[log(logx)]^(2)+c`

B

`1/2[log(logx)]^(2)+c`

C

`log(logx)+c`

D

`xlog(logx)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int(log(logx))/(x)dx

"If "int (log (logx))/(7x)dx=klogx[1-log(x)]+c , then k=.....

int(cos(logx))/(x)dx

int (log x)/(1+logx)^2 dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

"F i n d"int[log(logx)+1/((logx)^2)]dx Find log (log x)+ |dx 2 (log x)

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then