Home
Class 12
MATHS
int(dx)/(x^(2)-2x+2)=...

`int(dx)/(x^(2)-2x+2)=`

A

`1/2tan^(-1)(x-1)+c`

B

`tan^(-1)(x-1)+c`

C

`1/2logabs((x+sqrt(2))/(x-sqrt(2)))+c`

D

`1/2logabs((x-sqrt(2))/(x+sqrt(2)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{x^2 - 2x + 2}\), we will follow these steps: ### Step 1: Rewrite the denominator First, we need to rewrite the quadratic expression in the denominator. We can complete the square for \(x^2 - 2x + 2\). \[ x^2 - 2x + 2 = (x^2 - 2x + 1) + 1 = (x - 1)^2 + 1 \] ### Step 2: Substitute the expression in the integral Now, we can substitute this back into the integral: \[ \int \frac{dx}{(x - 1)^2 + 1} \] ### Step 3: Recognize the standard form The integral \(\int \frac{dx}{a^2 + x^2}\) has a standard result, which is \(\frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C\). In our case, \(a = 1\) and we have \(x - 1\) in place of \(x\). ### Step 4: Apply the formula Using the formula, we can now integrate: \[ \int \frac{dx}{(x - 1)^2 + 1} = \tan^{-1}(x - 1) + C \] ### Final Answer Thus, the final answer for the integral is: \[ \int \frac{dx}{x^2 - 2x + 2} = \tan^{-1}(x - 1) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(2x^(2)-x)=

What is int(dx)/(2x^(2)-2x+1) equal to ?

int(dx)/((3x^(2)-4x+2)^((3)/(2)))

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

int(dx)/((2x^(2)-x-1))

int_(0)^(1)(dx)/(x^(2)-2x+2)=

int(dx)/((x^(2)+2)(x^(2)+4))

What is the value of int(dx)/((x^(2) + a^(2)) (x^(2) + b^(2))) ?

Assertion (A) : int(dx)/(x^(2) + 2x + 3) = (1)/(sqrt(2)) tan^(-1)((x+1)/(sqrt(2))) + c Reason (R) : int(dx)/(x^(2) + a^(2)) = (1)/(a) tan^(-1)((x)/(a)) + c