Home
Class 12
MATHS
If inte^(x)sinxdx=(u)/(2)e^(x)+c, then u...

If `inte^(x)sinxdx=(u)/(2)e^(x)+c`, then `u=

A

`e^(x)/2(sinx-cosx)+c`

B

`-cosxe^(x)+e^(x)sinx+c`

C

`e^(x)/(2x)sin^(2)x+c`

D

`e^(x)(-sinx-cosx)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

2. int e^(x)sinxdx

if int e^(2x)sin x cos xdx=(u)/(8)e^(2x)+c then u

If inte^(sinx).sin2xdx=-2u.e^(sinx)+c, then u=

int x sinxdx

If intx^(2).e^(x^(3))dx=u.e^(x^(3))+c, then u=

int(sinxdx)/(1-cos x)=

int(sinxdx)/(3+4cos x)

if int e^(sqrt(x))dx=2ue^(sqrt(x))+c then u

I=int(sinxdx)/(cos^(3/4)x)=

Evaluate: inte^(2x)sinxdx