Home
Class 12
MATHS
inte^(x)(1+tanx)secxdx=...

`inte^(x)(1+tanx)secxdx=`

A

`e^(x)cotx+c`

B

`e^(x)tanx+c`

C

`e^(x)secx+c`

D

`e^(x)cosx+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|179 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

inte^(-x)(1-tanx)secx dx is equal to

inte^(x)(tanx+logsecx)dx=?

inte^(x)tanx(1+tanx)dx=

Evaluate : (i) inte^(x)((1)/(x)-(1)/(x^(2)))dx (ii) inte^(x)((1)/(x^(2))-(2)/(x^(3)))dx (iii) inte^(x){sin^(-1)x+(1)/(sqrt(1-x^(2)))}dx (iv) inte^(x)(tanx+logsecx)dx

inte^(x)secx(1+tanx)dx=?

Evaluate: inte^x(tanx+logsecx)dx

int(1-tanx)/(1+tanx)dx=

inte^x(tanx-logcosx)dx