Home
Class 12
MATHS
If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[...

If `int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c`,
then A =

A

`1/2`

B

`1/3`

C

`1/4`

D

`1/6`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

If int(1)/((x^(2)-1))ln((x-1)/(x+1))dx=6A[ln ((x-1)/(x+1))]^(2)+C , then find 24 A.

int_(2)^(3)log(x-1)/(x-1)dx

Knowledge Check

  • int(1)/(x)log((1)/(x))dx=

    A
    `log(logx)+c`
    B
    `-(1)/(2)(logx)^(2)+c`
    C
    `2logx+c`
    D
    `-logx+c`
  • Similar Questions

    Explore conceptually related problems

    int log(x+1)^(x+1)dx

    If int(ln((x-1)/(x+1)))/(x^(2)-1)dx=(1)/(a)*(ln|(x-1)/(x+1)|)^(b)+c , then a^(2)-b^(2)-ab is equal to __________.

    int(1)/(x cos^(2)(1+log x))dx

    int_(0)^(1)(log(1+x))/(1+x^(2))dx

    int(1)/(x(log x)^(2))dx

    int_(1)^(2)((1+log x))/(x)dx

    int_(1)^(2)(log x)/(x)dx=