Home
Class 12
MATHS
If int1/((1+x^(2))sqrt(1-x^(2)))dx=F(x)+...

If `int1/((1+x^(2))sqrt(1-x^(2)))dx=F(x)+c " and " F(1)=0`,
then for `x gt 0, F(x)=`

A

`1/sqrt(2)tan^(-1)((sqrt(2)x)/sqrt(1+x^(2)))+pi/2`

B

`1/sqrt(2)tan^(-1)((sqrt(2)x)/sqrt(1+x^(2)))-pi/(2sqrt(2))`

C

`1/sqrt(2)tan^(-1)((sqrt(2)x)/sqrt(1-x^(2)))+pi/(2sqrt(2))`

D

`1/sqrt(2)tan^(-1)((sqrt(2)x)/sqrt(1-x^(2)))-pi/(2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{(1+x^2)\sqrt{1-x^2}} \, dx = F(x) + C \] with the condition \( F(1) = 0 \), we will follow these steps: ### Step 1: Substitution Let \( x = \sin \theta \). Then, \( dx = \cos \theta \, d\theta \). The integral becomes: \[ \int \frac{1}{(1+\sin^2 \theta)\sqrt{1-\sin^2 \theta}} \cos \theta \, d\theta \] ### Step 2: Simplifying the Integral Using \( \sqrt{1 - \sin^2 \theta} = \cos \theta \), we rewrite the integral as: \[ \int \frac{\cos \theta}{(1+\sin^2 \theta)\cos \theta} \, d\theta = \int \frac{1}{1+\sin^2 \theta} \, d\theta \] ### Step 3: Further Simplification Now, we can express \( \sin^2 \theta \) in terms of \( \tan \theta \): Let \( \tan \theta = t \). Then, \( \sin^2 \theta = \frac{t^2}{1+t^2} \) and \( d\theta = \frac{1}{1+t^2} \, dt \). The integral becomes: \[ \int \frac{1}{1+\frac{t^2}{1+t^2}} \cdot \frac{1}{1+t^2} \, dt = \int \frac{1+t^2}{2+t^2} \cdot \frac{1}{1+t^2} \, dt = \int \frac{1}{2+t^2} \, dt \] ### Step 4: Integrating The integral \( \int \frac{1}{2+t^2} \, dt \) can be solved using the formula: \[ \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] In our case, \( a^2 = 2 \) (so \( a = \sqrt{2} \)). Thus, we have: \[ \int \frac{1}{2+t^2} \, dt = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{t}{\sqrt{2}} \right) + C \] ### Step 5: Back Substitution Recall that \( t = \tan \theta \) and \( \theta = \sin^{-1}(x) \). Therefore, we have: \[ F(x) = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{\tan(\sin^{-1}(x))}{\sqrt{2}} \right) + C \] ### Step 6: Simplifying Further Using \( \tan(\sin^{-1}(x)) = \frac{x}{\sqrt{1-x^2}} \), we get: \[ F(x) = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{x}{\sqrt{2(1-x^2)}} \right) + C \] ### Step 7: Applying the Condition \( F(1) = 0 \) Substituting \( x = 1 \): \[ F(1) = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{1}{\sqrt{2(1-1^2)}} \right) + C = 0 \] Since \( \tan^{-1}(\infty) = \frac{\pi}{2} \): \[ \frac{1}{\sqrt{2}} \cdot \frac{\pi}{2} + C = 0 \implies C = -\frac{\pi}{2\sqrt{2}} \] ### Final Result Thus, the function \( F(x) \) is given by: \[ F(x) = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{x}{\sqrt{2(1-x^2)}} \right) - \frac{\pi}{2\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

Let f(x),=int(x^(2))/((1+x^(2))(1+sqrt(1+x^(2))))dx and f(0),=0 then f(1) is

If f(x)=int 2-(1)/(1+x^(2))-(1)/(sqrt(1+x^(2)))dx , then f is

" If "f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))" and "f(0)=0" Find the value of "f(sqrt(3))-ln(2+sqrt(3))

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

If f(x)+int{f(x)}^(-2)dx=0 and f(1)=0 then f(x) is

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx , then f(1) =

If I=int(dx)/(x^(2)sqrt(1+x^(2)))=(f(x))/(x)+C, (AA x gt0) (where, C is the constant of integration) and f(1)=-sqrt2 , then the value of |f(sqrt3)| is