Home
Class 12
MATHS
The value of int(logx)/(x+1)^(2)dx is...

The value of `int(logx)/(x+1)^(2)dx` is

A

`(-logx)/(x+1)+logabs(x)-logabs(x+1)+c`

B

`(logx)/(x+1)+logabs(x)-logabs(x+1)+c`

C

`(logx)/(x+1)-logabs(x)-logabs(x+1)+c`

D

`(-logx)/(x+1)-logabs(x)-logabs(x+1)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\log x}{(x+1)^2} \, dx \), we will use integration by parts. Let's denote: - \( u = \log x \) - \( dv = \frac{1}{(x+1)^2} \, dx \) ### Step 1: Differentiate \( u \) and Integrate \( dv \) First, we differentiate \( u \) and integrate \( dv \): - \( du = \frac{1}{x} \, dx \) - To find \( v \), we integrate \( dv \): \[ v = \int \frac{1}{(x+1)^2} \, dx \] Using the integral formula \( \int \frac{1}{a^2} \, dx = -\frac{1}{a} + C \), we get: \[ v = -\frac{1}{x+1} \] ### Step 2: Apply Integration by Parts Formula Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we substitute our values: \[ \int \frac{\log x}{(x+1)^2} \, dx = \log x \left(-\frac{1}{x+1}\right) - \int \left(-\frac{1}{x+1}\right) \left(\frac{1}{x}\right) \, dx \] This simplifies to: \[ -\frac{\log x}{x+1} + \int \frac{1}{x(x+1)} \, dx \] ### Step 3: Simplify the Remaining Integral Now, we need to evaluate \( \int \frac{1}{x(x+1)} \, dx \). We can use partial fraction decomposition: \[ \frac{1}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1} \] Multiplying through by \( x(x+1) \): \[ 1 = A(x+1) + Bx \] Setting \( x = 0 \): \[ 1 = A(0+1) \Rightarrow A = 1 \] Setting \( x = -1 \): \[ 1 = B(-1) \Rightarrow B = -1 \] Thus, we have: \[ \frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1} \] ### Step 4: Integrate the Partial Fractions Now we can integrate: \[ \int \frac{1}{x(x+1)} \, dx = \int \left(\frac{1}{x} - \frac{1}{x+1}\right) \, dx = \log |x| - \log |x+1| + C \] ### Step 5: Combine Everything Now we substitute back into our expression: \[ \int \frac{\log x}{(x+1)^2} \, dx = -\frac{\log x}{x+1} + \left(\log |x| - \log |x+1|\right) + C \] This simplifies to: \[ -\frac{\log x}{x+1} + \log \left|\frac{x}{x+1}\right| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{\log x}{(x+1)^2} \, dx = -\frac{\log x}{x+1} + \log \left|\frac{x}{x+1}\right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(logx)/(x^(2))dx=?

int(logx)/(x+1)^2dx=

Evaluate : int(logx)/(x^(2))dx .

int(logx-1)/(x)dx

int(logx)/(x)dx=?

The value of int cos (logx)dx is

To find the value of int(1+logx)/(x)dx , the proper substitution is

The value of int(1+logx)/(sqrt((x^(x))^(2)-1))dx " is "

Evaluate int(logx)/((1+logx)^(2))dx .