Home
Class 12
MATHS
If A=[[-2, 0, 0], [-2, -1, 3]], B=[[0, 1...

If `A=[[-2, 0, 0], [-2, -1, 3]], B=[[0, 1], [2, 3], [1, -1]]`, then

A

`(AB)^(-1)` not exist

B

`(AB)^(-1)` is null matrix

C

`(AB)^(-1)` exist

D

`(AB)^(-1)` unit matrix

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of matrices A and B, denoted as AB. Let's go through the steps systematically. ### Step 1: Define the matrices A and B Given: \[ A = \begin{bmatrix} -2 & 0 & 0 \\ -2 & -1 & 3 \end{bmatrix} \] \[ B = \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 1 & -1 \end{bmatrix} \] ### Step 2: Check the dimensions of the matrices Matrix A is of size 2x3 (2 rows and 3 columns) and matrix B is of size 3x2 (3 rows and 2 columns). Since the number of columns in A (3) is equal to the number of rows in B (3), we can multiply these matrices. ### Step 3: Multiply the matrices A and B To find the product AB, we will use the formula for matrix multiplication. The element in the i-th row and j-th column of the resulting matrix is obtained by taking the dot product of the i-th row of A and the j-th column of B. Calculating each element of the resulting matrix AB: 1. **Element (1,1)**: \[ (-2 \cdot 0) + (0 \cdot 2) + (0 \cdot 1) = 0 + 0 + 0 = 0 \] 2. **Element (1,2)**: \[ (-2 \cdot 1) + (0 \cdot 3) + (0 \cdot -1) = -2 + 0 + 0 = -2 \] 3. **Element (2,1)**: \[ (-2 \cdot 0) + (-1 \cdot 2) + (3 \cdot 1) = 0 - 2 + 3 = 1 \] 4. **Element (2,2)**: \[ (-2 \cdot 1) + (-1 \cdot 3) + (3 \cdot -1) = -2 - 3 - 3 = -8 \] Thus, the product AB is: \[ AB = \begin{bmatrix} 0 & -2 \\ 1 & -8 \end{bmatrix} \] ### Step 4: Determine if AB is a null matrix A null matrix is a matrix where all elements are zero. Since \( AB \) contains non-zero elements, it is not a null matrix. ### Step 5: Calculate the determinant of AB The determinant of a 2x2 matrix \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is calculated as: \[ \text{det}(AB) = ad - bc \] For our matrix: \[ \text{det}(AB) = (0 \cdot -8) - (-2 \cdot 1) = 0 + 2 = 2 \] ### Step 6: Determine if AB is a singular matrix A matrix is singular if its determinant is zero. Since the determinant of \( AB \) is 2 (not zero), \( AB \) is a non-singular matrix. ### Step 7: Conclusion Based on the calculations: - \( AB \) is not a null matrix. - The determinant of \( AB \) is 2 (not equal to 0), hence \( AB \) is non-singular.
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

A=[[3, 2, 6], [1, 1, 2], [2, 2, 5]], B=[[1, 2, -2], [-1, 3, 0], [0, -2, 1]] , then

If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]] , then (B^(-1)A^(-1))^(-1)=

If A=[[1,0,-2],[3,-1,0],[-2,1,1]],B=[[0,5,-4],[-2,1,3],[-1,0,2]] and C=[[1,5,2],[-1,1,0],[0,-1,1]] verify that A(B-C)=(AB-AC)

If A=[[3,2,-1],[2,-2,0],[1,3,1]],B=[[-3,-1,0],[2,1,3],[4,-1,2]] and X=A+B then find X

If [[2, 1],[ 3, 2]]A[[-3 ,2],[ 5,-3]]=[[1 ,0],[ 0, 1]], then "A= (A) [[1, 1],[ 1 ,0]] (B) [[1, 1],[ 0, 1]] (C) [[1 ,0],[ 1 ,1]] (D) -[[1, 1],[ 1, 0]]

If A=[[1,0,5],[2,-1,3],[4,1,0]] and B=[[3,2,1],[0,2,1],[3,2,5]] .Show that (a) ( A + B )' = A' + B' (b) (2A)'=2A'

If A=[[2,1,3],[4,1,0]], B=[[1,-1],[0,2],[5,0]] , verify that (AB)\'=B\'A\'

If A=[[2,3,4],[1,2,3],[-1,1,2]], B=[[1,3,0],[-1,2,1],[0,0,2]] , find AB and BA and show that AB!=BA

If A=[[1],[2],[3]]" and "B=[[-5,4,0],[0,2,-1],[1,-3,2]] , then find BA

If A= [[1,-2,4],[1,2,3] ,[0,1,3]] , B= [[2,-1,5] ,[1,-2,2],[0,2,-4]] and C= [[1,2,3] ,[1,1,2] ,[2 ,0 ,1]] then A+B-C=

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 2, 3], [-1, 1, 2], [1, 2, 4]], B=[[1], [2], [3]] and AX=B, t...

    Text Solution

    |

  2. If A=[[1, 0, 1], [0, 2, 3], [1, 2, 1]], b=[[1, 2, 3], [1, 1, 5], [2, 4...

    Text Solution

    |

  3. If A=[[-2, 0, 0], [-2, -1, 3]], B=[[0, 1], [2, 3], [1, -1]], then

    Text Solution

    |

  4. If A=[[1, 2, 3], [1, -2, -3]], B=[[1, -1], [1, 2], [1, -1]], then

    Text Solution

    |

  5. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  6. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  7. If A=[[4, 1], [2, 3]] and B=[[2, 1], [0, -2]], then (AB)^(-1)=

    Text Solution

    |

  8. If A=[[2, 3], [1, 2]], B=[[3, 1], [0, 3]] then B^(-1)A^(-1)=

    Text Solution

    |

  9. If A=[[2, 3], [7, 11]], B=[[1, 0], [3, 1]] then (AB)^(-1)=

    Text Solution

    |

  10. If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] ...

    Text Solution

    |

  11. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  12. Equations x + y = 2, 2x + 2y = 3 will have

    Text Solution

    |

  13. If [(x-y-z),(-y+z),(z)]=[(0),(5),(3)] then the values of x,y and z are...

    Text Solution

    |

  14. If [[1, 1, 1], [1, -2, -2], [1, 3, 1]][[x], [y], [z]]=[[0], [3], [4]],...

    Text Solution

    |

  15. If A=[[1, -1, -2], [2, 1, 1], [4, -1, 2]], B=[[3], [5], [11]], X=[[x],...

    Text Solution

    |

  16. If [[x], [y], [z]]=(1)/(40)[[5, 10, -5], [-5, -2, 13], [10, -4, 6]][[5...

    Text Solution

    |

  17. The values of x, y, z for the equations x+y+z=1, 2x+3y+2z=2, ax+ay+2az...

    Text Solution

    |

  18. The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6...

    Text Solution

    |

  19. The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 ar...

    Text Solution

    |

  20. The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3...

    Text Solution

    |