Home
Class 12
MATHS
If [[1, 1, 1], [1, -2, -2], [1, 3, 1]][[...

If `[[1, 1, 1], [1, -2, -2], [1, 3, 1]][[x], [y], [z]]=[[0], [3], [4]]`, then `[[x], [y], [z]]=`

A

`[[1], [1], [1]]`

B

`[[1], [-2], [1]]`

C

`[[1], [-2], [3]]`

D

`[[1], [2], [-3]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in matrix form: \[ \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} \] we need to find the values of \(x\), \(y\), and \(z\). We can represent this as \(AX = B\), where \(A\) is the coefficient matrix, \(X\) is the variable matrix, and \(B\) is the constant matrix. To find \(X\), we can use the formula: \[ X = A^{-1}B \] ### Step 1: Find the Determinant of Matrix \(A\) The first step is to calculate the determinant of matrix \(A\): \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 3 & 1 \end{bmatrix} \] The determinant \(|A|\) can be calculated using the formula for a 3x3 matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ |A| = 1((-2)(1) - (-2)(3)) - 1(1(1) - (-2)(1)) + 1(1(3) - (-2)(1)) \] Calculating each term: - First term: \(1(-2 + 6) = 1 \cdot 4 = 4\) - Second term: \(-1(1 + 2) = -1 \cdot 3 = -3\) - Third term: \(1(3 + 2) = 1 \cdot 5 = 5\) Thus, \[ |A| = 4 - 3 + 5 = 6 \] ### Step 2: Find the Adjoint of Matrix \(A\) Next, we need to find the cofactor matrix and then the adjoint of \(A\). The cofactor matrix \(C\) is calculated by finding the determinant of the 2x2 matrices formed by removing the row and column of each element, applying the sign convention: 1. For element \(a_{11} = 1\): \(C_{11} = (-2)(1) - (-2)(3) = -2 + 6 = 4\) 2. For element \(a_{12} = 1\): \(C_{12} = -((1)(1) - (-2)(1)) = -1 + 2 = 1\) (with a negative sign, so \(-1\)) 3. For element \(a_{13} = 1\): \(C_{13} = (1)(1) - (-2)(1) = 1 + 2 = 3\) Continuing this for all elements, we get: \[ C = \begin{bmatrix} 4 & -1 & 3 \\ -3 & 1 & -5 \\ 2 & -1 & -3 \end{bmatrix} \] Now, we find the adjoint \(A^*\) by taking the transpose of the cofactor matrix: \[ A^* = C^T = \begin{bmatrix} 4 & -3 & 2 \\ -1 & 1 & -1 \\ 3 & -5 & -3 \end{bmatrix} \] ### Step 3: Find the Inverse of Matrix \(A\) Using the formula for the inverse: \[ A^{-1} = \frac{1}{|A|} A^* \] Substituting the values we found: \[ A^{-1} = \frac{1}{6} \begin{bmatrix} 4 & -3 & 2 \\ -1 & 1 & -1 \\ 3 & -5 & -3 \end{bmatrix} \] ### Step 4: Multiply \(A^{-1}\) with \(B\) Now we multiply \(A^{-1}\) with matrix \(B\): \[ B = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} \] Calculating \(X = A^{-1}B\): \[ X = \frac{1}{6} \begin{bmatrix} 4 & -3 & 2 \\ -1 & 1 & -1 \\ 3 & -5 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} \] Calculating each element: 1. First row: \(4(0) + (-3)(3) + 2(4) = 0 - 9 + 8 = -1\) 2. Second row: \(-1(0) + 1(3) + (-1)(4) = 0 + 3 - 4 = -1\) 3. Third row: \(3(0) + (-5)(3) + (-3)(4) = 0 - 15 - 12 = -27\) Thus, \[ X = \frac{1}{6} \begin{bmatrix} -1 \\ -1 \\ -27 \end{bmatrix} = \begin{bmatrix} -\frac{1}{6} \\ -\frac{1}{6} \\ -\frac{27}{6} \end{bmatrix} \] ### Final Result The values of \(x\), \(y\), and \(z\) are: \[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -\frac{1}{6} \\ -\frac{1}{6} \\ -\frac{27}{6} \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

Use product [[1,-1, 2],[ 0, 2,-3],[ 3,-2, 4]] [[-2, 0, 1],[ 9, 2,-3],[ 6, 1,-2]] to solve the system of equation: x-y+2z=1; 2y-3z=1; 3x-2y+4z=2

Determine the product [[-4, 4, 4], [-7, 1, 3],[5, -3, -1]][[1, -1, 1],[1, -2, -2],[2, 1, 3]] and use it to solve the system of equations x – y + z = 4, x – 2y – 2z = 9, 2x + y + 3z = 1

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

If [[3,2],[x,1]]=[[z, y],[3,1]] then (x+1,y+1,z+1) is equal to

If [[3,2],[x,1]]=[[z, y],[3,1]] then (x+1,y+1,z+1) is equal to

If [(1,2,3),(3,1,2),(2,3,1)][(x),(y),(z)]=[(4,-2),(0,-6),(-1,2)][(2),(1)], then (x,y,z)=

If |[x^3+1, x^2, x] , [y^3+1, y^2, y] , [z^3+1, z^2, z]|=0 and x, y, z are all different then prove that xyz=-1

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

If [(2,-1,3),(1,3,-1),(3,2,1)],[(x),(y),(z)]=[(9),(4),(10)] ,then [(x),(y),(z)] is equal to

If [(1,3,3),(1,4,4),(1,3,4)][(x),(y),(z)]=[(1),(2),(-3)], then the values of x, y and z respectively are

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 2, 3], [1, -2, -3]], B=[[1, -1], [1, 2], [1, -1]], then

    Text Solution

    |

  2. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  3. If A=[[2, 2], [-3, 2]] and B=[[0, -1], [1, 0]], then (B^(-1)A^(-1))^(-...

    Text Solution

    |

  4. If A=[[4, 1], [2, 3]] and B=[[2, 1], [0, -2]], then (AB)^(-1)=

    Text Solution

    |

  5. If A=[[2, 3], [1, 2]], B=[[3, 1], [0, 3]] then B^(-1)A^(-1)=

    Text Solution

    |

  6. If A=[[2, 3], [7, 11]], B=[[1, 0], [3, 1]] then (AB)^(-1)=

    Text Solution

    |

  7. If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] ...

    Text Solution

    |

  8. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  9. Equations x + y = 2, 2x + 2y = 3 will have

    Text Solution

    |

  10. If [(x-y-z),(-y+z),(z)]=[(0),(5),(3)] then the values of x,y and z are...

    Text Solution

    |

  11. If [[1, 1, 1], [1, -2, -2], [1, 3, 1]][[x], [y], [z]]=[[0], [3], [4]],...

    Text Solution

    |

  12. If A=[[1, -1, -2], [2, 1, 1], [4, -1, 2]], B=[[3], [5], [11]], X=[[x],...

    Text Solution

    |

  13. If [[x], [y], [z]]=(1)/(40)[[5, 10, -5], [-5, -2, 13], [10, -4, 6]][[5...

    Text Solution

    |

  14. The values of x, y, z for the equations x+y+z=1, 2x+3y+2z=2, ax+ay+2az...

    Text Solution

    |

  15. The values of x, y, z for the equations 5x-y+4z=5, 2x+3y+5z=2, 5x-2y+6...

    Text Solution

    |

  16. The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 ar...

    Text Solution

    |

  17. The values of x, y, z for the equations x+y+z=6, 3x-y+2z=7, 5x+5y-4z=3...

    Text Solution

    |

  18. Solve the following equations by the method of reduction 2x-y+z=1, x...

    Text Solution

    |

  19. If the inverse of the matriix [(alpha,14,-1),(2,3,1),(6,2,3)] does not...

    Text Solution

    |

  20. if A=[[2,-3],[-4,1]] then (3A^2+12A)=?

    Text Solution

    |