Home
Class 12
MATHS
If f(9)=9" and "f'(9)=4," then "underset...

If `f(9)=9" and "f'(9)=4," then "underset(xto9)("lim")(sqrt(f(x))-3)/(sqrt(x)-3)=`

A

`-4`

B

4

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \(\lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3}\), we will follow these steps: ### Step 1: Substitute the value of \(x\) First, we substitute \(x = 9\) into the limit expression: \[ \frac{\sqrt{f(9)} - 3}{\sqrt{9} - 3} = \frac{\sqrt{9} - 3}{3 - 3} = \frac{3 - 3}{0} = \frac{0}{0} \] This gives us an indeterminate form \(0/0\). **Hint**: When you encounter \(0/0\), consider using L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator: \[ \lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3} = \lim_{x \to 9} \frac{\frac{d}{dx}(\sqrt{f(x)})}{\frac{d}{dx}(\sqrt{x})} \] ### Step 3: Differentiate the numerator and denominator Now we differentiate the numerator and the denominator: - The derivative of \(\sqrt{f(x)}\) using the chain rule is: \[ \frac{1}{2\sqrt{f(x)}} \cdot f'(x) \] - The derivative of \(\sqrt{x}\) is: \[ \frac{1}{2\sqrt{x}} \] Thus, we have: \[ \lim_{x \to 9} \frac{\frac{1}{2\sqrt{f(x)}} f'(x)}{\frac{1}{2\sqrt{x}}} \] ### Step 4: Simplify the expression The \(2\) in the numerator and denominator cancels out: \[ \lim_{x \to 9} \frac{f'(x) \cdot \sqrt{x}}{\sqrt{f(x)}} \] ### Step 5: Substitute \(x = 9\) again Now we substitute \(x = 9\) into the simplified limit: \[ \frac{f'(9) \cdot \sqrt{9}}{\sqrt{f(9)}} \] Given that \(f(9) = 9\) and \(f'(9) = 4\): \[ \frac{4 \cdot 3}{\sqrt{9}} = \frac{12}{3} = 4 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3} = 4 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If f be a function such that f(9)=9 and f'(9)=3 , then lim_(xto9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to

If f(9)=9,f'(9)=4,then(lim)_(x rarr9)(sqrt(f(x))-3)/(sqrt(x)-3)=

lim_(x rarr0)(sqrt(x+4)-2)/(sqrt(x+9)-3)

If f(9)=9 , f'(9)= 4 then lim _ (x rarr9) (sqrt f(x) -3)/(sqrt(x)-3) =_____.

If f(9)=9 and f'(9)=1 then lim_(x rarr 9) (3-sqrt(f(x)))/(3-sqrtx)

If f(4)=g(4)=f'(4)=9,g'(4)=6, then (lim_(x rarr)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to 3sqrt(2)b(3)/(sqrt(2))c.0d .does not exists

lim_(x rarr9)(3-sqrt(x))/(4-sqrt(2x-2))

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If f(9)=9" and "f'(9)=4," then "underset(xto9)("lim")(sqrt(f(x))-3)/(s...

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |