Home
Class 12
MATHS
(d)/(dx)((7x^(2)-22x+4)/(x^(5)))=...

`(d)/(dx)((7x^(2)-22x+4)/(x^(5)))=`

A

`-21x^(-4)8x^(-5)+20x^(-^(-6)`

B

`-(21x^(-4)-8x^(-5)+20x^(-6))`

C

`21x^(-4)-8x^(-5)+20x^(-6)`

D

`21x^(-4)+8x^(-5)+20x^(-6)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \frac{7x^2 - 22x + 4}{x^5} \) with respect to \( x \), we can use the quotient rule or simplify the expression first. Here, we will simplify the expression first and then differentiate. ### Step-by-Step Solution: 1. **Rewrite the function**: \[ f(x) = \frac{7x^2}{x^5} - \frac{22x}{x^5} + \frac{4}{x^5} \] This simplifies to: \[ f(x) = 7x^{-3} - 22x^{-4} + 4x^{-5} \] 2. **Differentiate each term**: We will differentiate \( f(x) \) term by term using the power rule \( \frac{d}{dx}(x^n) = nx^{n-1} \). - For the first term \( 7x^{-3} \): \[ \frac{d}{dx}(7x^{-3}) = 7 \cdot (-3)x^{-4} = -21x^{-4} \] - For the second term \( -22x^{-4} \): \[ \frac{d}{dx}(-22x^{-4}) = -22 \cdot (-4)x^{-5} = 88x^{-5} \] - For the third term \( 4x^{-5} \): \[ \frac{d}{dx}(4x^{-5}) = 4 \cdot (-5)x^{-6} = -20x^{-6} \] 3. **Combine the derivatives**: Now, we combine the results from each differentiation: \[ f'(x) = -21x^{-4} + 88x^{-5} - 20x^{-6} \] 4. **Final expression**: We can write the final derivative as: \[ f'(x) = -21x^{-4} + 88x^{-5} - 20x^{-6} \] ### Final Answer: \[ f'(x) = -21x^{-4} + 88x^{-5} - 20x^{-6} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[(2^(x)3^(2^x))/(5^(x)7^(x))]=

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

The order and degree of the differential equation ((dy)/(dx)) ^(1//3) -4 (d ^(2)y)/(dx ^(2)) -7x=0 are alpha and beta, then the value of (alpha +beta) is:

The order and degree of the differential equation ((dy)/(dx)) ^(1//3) -4 (d ^(2)y)/(dx ^(2)) -7x=0 are alpha and beta, then the value of (alpha +beta) is:

Differentiate the following functions with respect to x (a) x^(4) + 3x^(2) -2x (b) x^(2) cos x (c) (6x +7)^(4) (d) e^(x) x^(5) (e) ((1 + x))/(e^(x))

what are the order and degree respectively of the differential equation {(d^(4)y//dx^(4))^(3)}^(2//3)-7x(d^(3)y//dx^(3))^(2)=8 ?

The order and degree of the differential equation sqrt((dy)/(dx))-4(dy)/(dx)-7x=0 are

The differential equation (dy)/(dx)=(7x-3y-7)/(-3x+7y+3) reduces to homogeneous form by making the substitution

y=500e^(7x)+600e^(-7x) show that (d^(2)y)/(dx^(2))=49y