Home
Class 12
MATHS
(d)/(dx)[log((x^(n))/(e^(x)))]=...

`(d)/(dx)[log((x^(n))/(e^(x)))]=`

A

`(n)/(x)+1`

B

`(1)/(x)+n`

C

`(n)/(x)-1`

D

`(1)/(x)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( \log\left(\frac{x^n}{e^x}\right) \), we can follow these steps: ### Step 1: Apply the logarithmic property Using the property of logarithms that states \( \log\left(\frac{a}{b}\right) = \log(a) - \log(b) \), we can rewrite the expression: \[ \log\left(\frac{x^n}{e^x}\right) = \log(x^n) - \log(e^x) \] ### Step 2: Simplify using logarithmic identities Next, we can use the property of logarithms that states \( \log(a^m) = m \log(a) \): \[ \log(x^n) = n \log(x) \quad \text{and} \quad \log(e^x) = x \] Thus, we can rewrite the expression as: \[ n \log(x) - x \] ### Step 3: Differentiate the expression Now, we differentiate the expression \( n \log(x) - x \) with respect to \( x \): \[ \frac{d}{dx}[n \log(x) - x] \] Using the derivative rules, we have: - The derivative of \( n \log(x) \) is \( n \cdot \frac{1}{x} \) (since \( n \) is a constant). - The derivative of \( -x \) is \( -1 \). Putting it all together, we get: \[ \frac{d}{dx}[n \log(x) - x] = \frac{n}{x} - 1 \] ### Final Answer Thus, the derivative of \( \log\left(\frac{x^n}{e^x}\right) \) is: \[ \frac{n}{x} - 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[log((x)/(e^(tan x)))]=

(d)/(dx)[log((x)/(e^(cotx)))]=

(d)/(dx)[log((e^(4x))/(1+e^(4x)))]

(d)/(dx)(log*sin x)

(d)/(dx)(log tan x)

(d)/(dx)[log(cos h(2x))]=

d/(dx) [log(logx)] =

d/(dx)[log (sqrt(sin sqrt(e^(x))))]=

(d)/(dx)[log(sec x+tan x)]=

(d)/(dx)((log x)/(sin x))=