Home
Class 12
MATHS
(d)/(dx)[log((x)/(e^(cotx)))]=...

`(d)/(dx)[log((x)/(e^(cotx)))]=`

A

`1-csc^(2)x`

B

`-1-csc^(2)x`

C

`x^(-1)-csc^(2)x`

D

`x^(-1)+csc^(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( \log\left(\frac{x}{e^{\cot x}}\right) \), we can follow these steps: ### Step 1: Apply the logarithmic property Using the property of logarithms, we can rewrite the expression: \[ \log\left(\frac{x}{e^{\cot x}}\right) = \log(x) - \log(e^{\cot x}) \] ### Step 2: Simplify the logarithm of the exponential Using the property of logarithms that states \( \log(a^b) = b \cdot \log(a) \), we can simplify further: \[ \log(e^{\cot x}) = \cot x \cdot \log(e) \] Since \( \log(e) = 1 \), we have: \[ \log(e^{\cot x}) = \cot x \] ### Step 3: Rewrite the expression Now, substituting back, we get: \[ \log\left(\frac{x}{e^{\cot x}}\right) = \log(x) - \cot x \] ### Step 4: Differentiate the expression Now we differentiate the expression: \[ \frac{d}{dx}[\log(x) - \cot(x)] \] Using the derivative formulas: - The derivative of \( \log(x) \) is \( \frac{1}{x} \). - The derivative of \( \cot(x) \) is \( -\csc^2(x) \). Thus, we have: \[ \frac{d}{dx}[\log(x)] - \frac{d}{dx}[\cot(x)] = \frac{1}{x} - (-\csc^2(x)) \] This simplifies to: \[ \frac{1}{x} + \csc^2(x) \] ### Final Answer So, the final answer is: \[ \frac{1}{x} + \csc^2(x) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[log((x)/(e^(tan x)))]=

(d)/(dx)[log((x^(n))/(e^(x)))]=

(d)/(dx)[log((e^(4x))/(1+e^(4x)))]

(d)/(dx)(log*sin x)

(d)/(dx)(log tan x)

(d)/(dx)[log(sec x+tan x)]=

d/(dx) [log(logx)] =

(d)/(dx)((log x)/(sin x))=

(d)/(dx)(log e^(x)*log x)

(d)/(dx)[log(cos h(2x))]=