Home
Class 12
MATHS
Derivative of log (x+sqrt(x^(2)-1))w.r.t...

Derivative of log `(x+sqrt(x^(2)-1))`w.r.t.x is

A

`(1)/(sqrt(x^(2-1)))`

B

`(-1)/(sqrt(x^(2)-1))`

C

`(1)/(sqrt(x^(2+1)))`

D

`(-1)/(sqrt(x^(2-1)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log(x + \sqrt{x^2 - 1}) \) with respect to \( x \), we will follow these steps: ### Step 1: Differentiate the logarithmic function We start with the function: \[ y = \log(x + \sqrt{x^2 - 1}) \] Using the chain rule, the derivative of \( \log(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \] where \( u = x + \sqrt{x^2 - 1} \). ### Step 2: Find \( \frac{du}{dx} \) Now, we need to differentiate \( u \): \[ u = x + \sqrt{x^2 - 1} \] The derivative of \( u \) is: \[ \frac{du}{dx} = \frac{d}{dx}(x) + \frac{d}{dx}(\sqrt{x^2 - 1}) \] The derivative of \( x \) is \( 1 \). For \( \sqrt{x^2 - 1} \), we apply the chain rule: \[ \frac{d}{dx}(\sqrt{x^2 - 1}) = \frac{1}{2\sqrt{x^2 - 1}} \cdot \frac{d}{dx}(x^2 - 1) = \frac{1}{2\sqrt{x^2 - 1}} \cdot (2x) = \frac{x}{\sqrt{x^2 - 1}} \] Thus, we have: \[ \frac{du}{dx} = 1 + \frac{x}{\sqrt{x^2 - 1}} \] ### Step 3: Substitute back into the derivative formula Now substituting \( u \) and \( \frac{du}{dx} \) back into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 - 1}} \cdot \left( 1 + \frac{x}{\sqrt{x^2 - 1}} \right) \] ### Step 4: Simplify the expression We can simplify the expression: \[ \frac{dy}{dx} = \frac{1 + \frac{x}{\sqrt{x^2 - 1}}}{x + \sqrt{x^2 - 1}} \] To combine the terms in the numerator: \[ \frac{dy}{dx} = \frac{\sqrt{x^2 - 1} + x}{\sqrt{x^2 - 1}(x + \sqrt{x^2 - 1})} \] ### Step 5: Final simplification Notice that \( \sqrt{x^2 - 1} + x \) can be rewritten as: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}} \] ### Final Result Thus, the derivative of \( \log(x + \sqrt{x^2 - 1}) \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Derivative of log(x+sqrt(x^(2)+a^(2)))w.r.t.x is

Derivative of log (1+x^(2))w.r.t.(x-tan^(-1)x) is

Derivative of cos^(-1)sqrt(x)w.r.t.sqrt(1-x) is

Derivative of log [log(log(logx)] w.r.t.x is the reciprocal of

Find derivative of sec (tan(sqrt(x))) w.r.t.to x

Derivative of sec^(2)(tan^(-1)x) w.r.t. x is

Find derivative of 2sqrt(cos(x^(2))) w.r.t.to x

Find the derivative of (log x)^(x)+x^(log x) w.r.t.x

Find the derivative of cos (sin x^(2))" w.r.t.x. at x"=sqrt(pi/2) .

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is