Home
Class 12
MATHS
(d)/(dx)((cosx+sinx)/(cosx-sinx))=...

`(d)/(dx)((cosx+sinx)/(cosx-sinx))=`

A

`sec2xtan2x`

B

`2sec2x(sec2x+tan2x)`

C

`tan2x`

D

`sec2x(sec2x-tan2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left(\frac{\cos x + \sin x}{\cos x - \sin x}\right)\), we will use the quotient rule of differentiation. Here are the steps: ### Step 1: Define the function Let \[ f(x) = \frac{\cos x + \sin x}{\cos x - \sin x} \] ### Step 2: Apply the quotient rule The quotient rule states that if \(f(x) = \frac{u}{v}\), then \[ f'(x) = \frac{u'v - uv'}{v^2} \] where \(u = \cos x + \sin x\) and \(v = \cos x - \sin x\). ### Step 3: Differentiate \(u\) and \(v\) First, we find \(u'\) and \(v'\): - For \(u = \cos x + \sin x\): \[ u' = -\sin x + \cos x \] - For \(v = \cos x - \sin x\): \[ v' = -\sin x - \cos x \] ### Step 4: Substitute into the quotient rule Now substitute \(u\), \(u'\), \(v\), and \(v'\) into the quotient rule: \[ f'(x) = \frac{(-\sin x + \cos x)(\cos x - \sin x) - (\cos x + \sin x)(-\sin x - \cos x)}{(\cos x - \sin x)^2} \] ### Step 5: Simplify the numerator Now we simplify the numerator: 1. Expand the first term: \[ (-\sin x + \cos x)(\cos x - \sin x) = -\sin x \cos x + \sin^2 x + \cos^2 x - \cos x \sin x = 1 - 2\sin x \cos x \] 2. Expand the second term: \[ (\cos x + \sin x)(-\sin x - \cos x) = -\cos x \sin x - \cos^2 x - \sin^2 x - \sin x \cos x = -1 - 2\sin x \cos x \] 3. Combine both: \[ 1 - 2\sin x \cos x + 1 + 2\sin x \cos x = 2 \] ### Step 6: Write the final derivative Now we have: \[ f'(x) = \frac{2}{(\cos x - \sin x)^2} \] ### Final Answer Thus, the derivative of the function is: \[ \frac{d}{dx}\left(\frac{\cos x + \sin x}{\cos x - \sin x}\right) = \frac{2}{(\cos x - \sin x)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)((sinx)/(1+cosx))=

Differentiate each of the following w.r.t. x: (i) tan^(-1)((1-cosx)/(sinx))" "(ii)tan^(-1)((cos x -sinx)/(cosx +sinx))

(d)/(dx)((cosx)/(1+sinx))=

(d)/(dx)[tan^(-1)((sinx)/(1+cosx))]=

At x=(pi)/(4),(d)/(dx)[tan^(-1)((cosx)/(1+sinx))]=

(d)/(dx)(cosx-(1)/(3)cos^(3)x)=

Differentiate tan^(-1)((a cosx-b sinx)/(b cosx + a sinx)) w.r.t. x.

(d)/(dx)[sin^(-1)((3cosx+4sinx)/(5))]=

If y=(cosx-sinx)/(cosx+sinx)," then "(d^(2)y)/(dx^(2)):(dy)/(dx)=