Home
Class 12
MATHS
If f(x)=(1-sin^(2)x)/(1+sin^(2)x)," then...

If `f(x)=(1-sin^(2)x)/(1+sin^(2)x)," then "3f'((pi)/(4))-f((pi)/(4))=`

A

`-3`

B

0

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( 3f'(\frac{\pi}{4}) - f(\frac{\pi}{4}) \) where \( f(x) = \frac{1 - \sin^2 x}{1 + \sin^2 x} \). ### Step 1: Simplify the function \( f(x) \) We can simplify \( f(x) \) using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ f(x) = \frac{1 - \sin^2 x}{1 + \sin^2 x} = \frac{\cos^2 x}{1 + \sin^2 x} \] ### Step 2: Differentiate \( f(x) \) To differentiate \( f(x) \), we will use the quotient rule, which states: \[ \left( \frac{u}{v} \right)' = \frac{u'v - uv'}{v^2} \] Here, let \( u = \cos^2 x \) and \( v = 1 + \sin^2 x \). 1. Differentiate \( u \): \[ u' = 2\cos x(-\sin x) = -2\sin x \cos x \] 2. Differentiate \( v \): \[ v' = 2\sin x \cos x \] Now applying the quotient rule: \[ f'(x) = \frac{(-2\sin x \cos x)(1 + \sin^2 x) - (\cos^2 x)(2\sin x \cos x)}{(1 + \sin^2 x)^2} \] ### Step 3: Simplify \( f'(x) \) Combining the terms in the numerator: \[ = \frac{-2\sin x \cos x(1 + \sin^2 x) - 2\sin x \cos^3 x}{(1 + \sin^2 x)^2} \] Factoring out \( -2\sin x \cos x \): \[ = \frac{-2\sin x \cos x \left( (1 + \sin^2 x) + \cos^2 x \right)}{(1 + \sin^2 x)^2} \] Using \( 1 + \sin^2 x + \cos^2 x = 2 \): \[ = \frac{-2\sin x \cos x \cdot 2}{(1 + \sin^2 x)^2} = \frac{-4\sin x \cos x}{(1 + \sin^2 x)^2} \] ### Step 4: Evaluate \( f'(\frac{\pi}{4}) \) Now we evaluate \( f'(\frac{\pi}{4}) \): 1. Calculate \( \sin(\frac{\pi}{4}) = \cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} \). 2. Substitute into \( f'(\frac{\pi}{4}) \): \[ f'(\frac{\pi}{4}) = \frac{-4 \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}}{(1 + \frac{1}{2})^2} = \frac{-4 \cdot \frac{1}{2}}{\left(\frac{3}{2}\right)^2} = \frac{-2}{\frac{9}{4}} = \frac{-8}{9} \] ### Step 5: Evaluate \( f(\frac{\pi}{4}) \) Now we evaluate \( f(\frac{\pi}{4}) \): \[ f(\frac{\pi}{4}) = \frac{\cos^2(\frac{\pi}{4})}{1 + \sin^2(\frac{\pi}{4})} = \frac{\left(\frac{1}{\sqrt{2}}\right)^2}{1 + \left(\frac{1}{\sqrt{2}}\right)^2} = \frac{\frac{1}{2}}{1 + \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3} \] ### Step 6: Calculate \( 3f'(\frac{\pi}{4}) - f(\frac{\pi}{4}) \) Finally, we compute: \[ 3f'(\frac{\pi}{4}) - f(\frac{\pi}{4}) = 3 \left(\frac{-8}{9}\right) - \frac{1}{3} \] Calculating \( 3 \cdot \frac{-8}{9} = \frac{-24}{9} \) and converting \( \frac{1}{3} \) to a fraction with a denominator of 9: \[ \frac{1}{3} = \frac{3}{9} \] Thus, \[ 3f'(\frac{\pi}{4}) - f(\frac{\pi}{4}) = \frac{-24}{9} - \frac{3}{9} = \frac{-27}{9} = -3 \] ### Final Answer \[ 3f'(\frac{\pi}{4}) - f(\frac{\pi}{4}) = -3 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If : f(x)=(sin^(2)x)/(1+cotx)+(cos^(2)x)/(1+tanx)," then: "f'((pi)/(4))=

If f(x)=(1-sin x)/((pi-2x)^(2)), when x!=(pi)/(2) and f((pi)/(2))=lambda, the f(x) will be continuous function at x=(pi)/(2), where lambda=?( a) (1)/(8)( b ) (1)/(4) (c) (1)/(2) (d) none of these

If f(x)=|cos x-sin x|, then f'((pi)/(4))=

if f(x)=x^(3)-2x^(2)+3x-5, then f(sin(5(pi)/(2)))+f(sin(3(pi)/(2)))=

let f(x)=e^(cos-1)sin(x+(pi)/(3)) then f((8 pi)/(9)) and f((-7 pi)/(4))

If f(x)=(|x|)^(|sin|), then f'((-pi)/(4)) is-

If f(x)=|x|^(|sin x|) then f'(-(pi)/(4)) is

If f(x)=|x|^(sin x|), then find f'(-(pi)/(4))

f (x) = ln (sin x) ^ (2) then f ((pi) / (4)) =

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If f(x)=(1-sin^(2)x)/(1+sin^(2)x)," then "3f'((pi)/(4))-f((pi)/(4))=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |