Home
Class 12
MATHS
(d)/(dx)[tan^(-1)((2+3tanx)/(3-2tanx))]=...

`(d)/(dx)[tan^(-1)((2+3tanx)/(3-2tanx))]=`

A

0

B

1

C

`-1`

D

`3//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \((d)/(dx)[\tan^{-1}((2+3\tan x)/(3-2\tan x))]\), we will follow these steps: ### Step 1: Simplify the expression inside the arctangent We start with the expression: \[ y = \tan^{-1}\left(\frac{2 + 3\tan x}{3 - 2\tan x}\right) \] To simplify this, we divide both the numerator and the denominator by 3: \[ y = \tan^{-1}\left(\frac{\frac{2}{3} + \tan x}{1 - \frac{2}{3}\tan x}\right) \] ### Step 2: Substitute \(\frac{2}{3}\) with \(\tan \theta\) Let \(\tan \theta = \frac{2}{3}\). Then we can rewrite our expression as: \[ y = \tan^{-1}\left(\frac{\tan \theta + \tan x}{1 - \tan \theta \tan x}\right) \] ### Step 3: Use the tangent addition formula Using the identity for the tangent of a sum, we have: \[ \tan^{-1}\left(\frac{\tan \theta + \tan x}{1 - \tan \theta \tan x}\right) = \tan^{-1}(\tan(\theta + x)) \] Thus, we can simplify \(y\) to: \[ y = \theta + x \] ### Step 4: Replace \(\theta\) with \(\tan^{-1}\left(\frac{2}{3}\right)\) Now substituting back for \(\theta\): \[ y = \tan^{-1}\left(\frac{2}{3}\right) + x \] ### Step 5: Differentiate with respect to \(x\) Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = 0 + 1 = 1 \] ### Final Answer Thus, the derivative is: \[ \frac{d}{dx}\left[\tan^{-1}\left(\frac{2 + 3\tan x}{3 - 2\tan x}\right)\right] = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=

(d)/(dx)[tan^(-1)[(secx-tanx)]=

(d)/(dx)[tan^(-1)((ax-b)/(bx+a))]=

(d)/(dx)(tan^(-1)(birth x))

int_(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx)[tan^(-1)((10x)/(4-6x^(2)))]=

(d)/(dx)[tan^(-1)((sinx)/(1+cosx))]=