Home
Class 12
MATHS
(d)/(dx)[tan^(-1)((asinx+bcosx)/(acosx-b...

`(d)/(dx)[tan^(-1)((asinx+bcosx)/(acosx-bsinx))]=`

A

`(a)/(b)`

B

`(b)/(a)`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left[\tan^{-1}\left(\frac{a \sin x + b \cos x}{a \cos x - b \sin x}\right)\right]\), we will follow these steps: ### Step 1: Simplify the Argument of the Arctangent We start by simplifying the expression inside the arctangent. We divide both the numerator and the denominator by \(a \cos x\): \[ \frac{a \sin x + b \cos x}{a \cos x - b \sin x} = \frac{\frac{a \sin x}{a \cos x} + \frac{b \cos x}{a \cos x}}{\frac{a \cos x}{a \cos x} - \frac{b \sin x}{a \cos x}} = \frac{\tan x + \frac{b}{a}}{1 - \frac{b}{a} \tan x} \] ### Step 2: Use the Arctangent Addition Formula Now, we can use the identity for the tangent of a sum: \[ \tan^{-1}\left(\frac{\tan x + \frac{b}{a}}{1 - \frac{b}{a} \tan x}\right) = \tan^{-1}(\tan(x + \theta)) \] where \(\theta = \tan^{-1}\left(\frac{b}{a}\right)\). ### Step 3: Apply the Inverse Tangent Function Since \(\tan^{-1}\) and \(\tan\) are inverse functions, we have: \[ \tan^{-1}(\tan(x + \theta)) = x + \theta \] ### Step 4: Differentiate the Result Now we differentiate \(x + \theta\) with respect to \(x\): \[ \frac{d}{dx}(x + \theta) = \frac{d}{dx}(x) + \frac{d}{dx}(\theta) \] Since \(\theta\) is a constant (as it depends on \(a\) and \(b\)), its derivative is 0: \[ \frac{d}{dx}(x + \theta) = 1 + 0 = 1 \] ### Final Answer Thus, the derivative is: \[ \frac{d}{dx}\left[\tan^{-1}\left(\frac{a \sin x + b \cos x}{a \cos x - b \sin x}\right)\right] = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)((sinx)/(1+cosx))]=

At x=(pi)/(4),(d)/(dx)[tan^(-1)((cosx)/(1+sinx))]=

(d)/(dx)[tan^(-1)((ax-b)/(bx+a))]=

(d)/(dx)[tan^(-1)(cosecx+cotx)]=

(d)/(dx)[sec(tan^(-1)x)]=

(d)/(dx)[tan^(-1)[(secx-tanx)]=

(d)/(dx)(tan^(-1)(birth x))

(d)/(dx)[tan^(-1)sqrt((1+sinx)/(1-sinx))]=

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)[tan^(-1)((2+3tanx)/(3-2tanx))]=