Home
Class 12
MATHS
(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=...

`(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=`

A

`(1)/(sqrt(1-x^(2)))`

B

`(-1)/(sqrt(1-x^(2)))`

C

`(-1)/(2sqrt(1-x^(2)))`

D

`(1)/(sqrt(2(1-x^(2))))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin^{-1} \left( \sqrt{\frac{1-x}{2}} \right) \), we will use the chain rule and the derivative of the inverse sine function. Here are the steps: ### Step 1: Identify the outer and inner functions The outer function is \( \sin^{-1}(u) \) where \( u = \sqrt{\frac{1-x}{2}} \). ### Step 2: Differentiate the outer function The derivative of \( \sin^{-1}(u) \) with respect to \( u \) is: \[ \frac{d}{du} \left( \sin^{-1}(u) \right) = \frac{1}{\sqrt{1 - u^2}} \] ### Step 3: Differentiate the inner function Now we need to differentiate \( u = \sqrt{\frac{1-x}{2}} \) with respect to \( x \): \[ u = \left( \frac{1-x}{2} \right)^{1/2} \] Using the chain rule: \[ \frac{du}{dx} = \frac{1}{2} \left( \frac{1-x}{2} \right)^{-1/2} \cdot \frac{d}{dx} \left( \frac{1-x}{2} \right) \] Calculating \( \frac{d}{dx} \left( \frac{1-x}{2} \right) \): \[ \frac{d}{dx} \left( \frac{1-x}{2} \right) = \frac{-1}{2} \] Thus, \[ \frac{du}{dx} = \frac{1}{2} \left( \frac{1-x}{2} \right)^{-1/2} \cdot \left( -\frac{1}{2} \right) = -\frac{1}{4} \left( \frac{1-x}{2} \right)^{-1/2} \] ### Step 4: Combine the derivatives using the chain rule Now we apply the chain rule: \[ \frac{dy}{dx} = \frac{d}{du} \left( \sin^{-1}(u) \right) \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left( \sqrt{\frac{1-x}{2}} \right)^2}} \cdot \left(-\frac{1}{4} \left( \frac{1-x}{2} \right)^{-1/2}\right) \] ### Step 5: Simplify the expression First simplify \( 1 - \left( \sqrt{\frac{1-x}{2}} \right)^2 \): \[ 1 - \frac{1-x}{2} = \frac{2 - (1-x)}{2} = \frac{1+x}{2} \] Now substituting this back: \[ \frac{dy}{dx} = \frac{1}{\sqrt{\frac{1+x}{2}}} \cdot \left(-\frac{1}{4} \left( \frac{1-x}{2} \right)^{-1/2}\right) \] This simplifies to: \[ \frac{dy}{dx} = -\frac{1}{4} \cdot \frac{1}{\sqrt{\frac{1+x}{2}}} \cdot \left( \frac{2}{\sqrt{1-x}} \right) \] \[ = -\frac{1}{4} \cdot \frac{2}{\sqrt{1+x} \cdot \sqrt{1-x}} = -\frac{1}{2} \cdot \frac{1}{\sqrt{(1+x)(1-x)}} \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = -\frac{1}{2 \sqrt{1-x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[cos^(-1)sqrt(((1+x))/(2))]

(d)/(dx)[sin^(-1)((3x-x^(3))/(2))]

(d)/(dx)[cos^(-1)sqrt((1+x^(2))/(2))=

(d)/(dx)sin^(2)x

(d)/(dx)[sin^(2)cot^(-1)sqrt((1-x)/(1+x))] is

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

(d)/(dx)[sin(2tan^(-1)sqrt((1+x)/(1-x)))]=

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

(d)/(dx)[sin^(-1)(x^(2)-(1)/(2))]" at "x=0

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=