Home
Class 12
MATHS
(d)/(dx)[cos^(-1)sqrt(((1+x))/(2))]...

`(d)/(dx)[cos^(-1)sqrt(((1+x))/(2))]`

A

`(-1)/(sqrt(1-x^(2)))`

B

`(-1)/(2sqrt(1-x^(2)))`

C

`(1)/(sqrt(1-x^(2)))`

D

`(1)/(2sqrt(1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cos^{-1} \left( \sqrt{\frac{1+x}{2}} \right) \), we will follow these steps: ### Step 1: Identify the outer and inner functions We have an outer function \( y = \cos^{-1}(u) \) where \( u = \sqrt{\frac{1+x}{2}} \). ### Step 2: Differentiate the outer function Using the derivative of the inverse cosine function, we have: \[ \frac{dy}{du} = -\frac{1}{\sqrt{1 - u^2}} \] ### Step 3: Differentiate the inner function Now, we need to differentiate \( u = \sqrt{\frac{1+x}{2}} \). We can rewrite \( u \) as: \[ u = \left( \frac{1+x}{2} \right)^{1/2} \] Using the chain rule: \[ \frac{du}{dx} = \frac{1}{2} \left( \frac{1+x}{2} \right)^{-1/2} \cdot \frac{d}{dx} \left( \frac{1+x}{2} \right) \] Calculating \( \frac{d}{dx} \left( \frac{1+x}{2} \right) = \frac{1}{2} \), we get: \[ \frac{du}{dx} = \frac{1}{2} \left( \frac{1+x}{2} \right)^{-1/2} \cdot \frac{1}{2} = \frac{1}{4} \left( \frac{1+x}{2} \right)^{-1/2} \] ### Step 4: Combine the derivatives using the chain rule Now we can apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{1}{4} \left( \frac{1+x}{2} \right)^{-1/2} \] ### Step 5: Substitute \( u \) back into the equation Next, we need to substitute \( u \) back into the equation: \[ u^2 = \frac{1+x}{2} \implies 1 - u^2 = 1 - \frac{1+x}{2} = \frac{1 - x}{2} \] Thus, \( \sqrt{1 - u^2} = \sqrt{\frac{1-x}{2}} \). ### Step 6: Final expression for \( \frac{dy}{dx} \) Now substituting \( \sqrt{1 - u^2} \) into our derivative: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{\frac{1-x}{2}}} \cdot \frac{1}{4} \left( \frac{1+x}{2} \right)^{-1/2} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{1}{4} \cdot \frac{1}{\sqrt{\frac{1-x}{2}}} \cdot \frac{1}{\sqrt{\frac{1+x}{2}}} \] Combining the square roots: \[ \frac{dy}{dx} = -\frac{1}{4} \cdot \frac{1}{\sqrt{\frac{(1-x)(1+x)}{4}}} = -\frac{1}{4} \cdot \frac{2}{\sqrt{1-x^2}} = -\frac{1}{2\sqrt{1-x^2}} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{1-x^2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

(d)/(dx)[tan^(-1)sqrt((1+(cos x)/(2))/(1-(cos x)/(2))))

(d)/(dx)[cos^(-1)(xsqrtx-sqrt((1-x)(1-x^(2))))]=

(d)/(dx)cos^(-1)(sin x)=

(d)/(dx) (cos (sec^(-1) ((x)/(8)))=

Find (d)/(dx) tan^(-1)(sqrt((1-cos x)/(1+cos x))) .

Prove that (d)/(dx)(cos^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

(d)/(dx)[tan^(-1)sqrt(1+x^(2))-cot^(-1)(-sqrt(1+x^(2)))]=

d/(dx)(cos^(-1)((1 - x^2)/(1 + x^2))) =.............. If x is positive

(d)/(dx)cos^(-1)sqrt(cos x) is equal to