Home
Class 12
MATHS
(d)/(dx)[cot^(-1)((1-x)/(1+x))]=...

`(d)/(dx)[cot^(-1)((1-x)/(1+x))]=`

A

`(-1)/(1+x^(2))`

B

`(1)/(1-x^(2))`

C

`(1)/(1+x^(2))`

D

`(2)/(1+x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cot^{-1}\left(\frac{1-x}{1+x}\right) \), we will follow these steps: ### Step 1: Use the differentiation formula for cotangent inverse The differentiation formula for \( \cot^{-1}(x) \) is: \[ \frac{d}{dx} \left( \cot^{-1}(x) \right) = -\frac{1}{1 + x^2} \] We will apply this formula to our function where \( x = \frac{1-x}{1+x} \). ### Step 2: Differentiate using the chain rule Using the chain rule, we have: \[ \frac{dy}{dx} = -\frac{1}{1 + \left(\frac{1-x}{1+x}\right)^2} \cdot \frac{d}{dx}\left(\frac{1-x}{1+x}\right) \] ### Step 3: Differentiate the inner function Now we need to differentiate \( \frac{1-x}{1+x} \): Using the quotient rule: \[ \frac{d}{dx}\left(\frac{1-x}{1+x}\right) = \frac{(1+x)(-1) - (1-x)(1)}{(1+x)^2} \] Simplifying the numerator: \[ = \frac{-1 - x - 1 + x}{(1+x)^2} = \frac{-2}{(1+x)^2} \] ### Step 4: Substitute back into the derivative Now substituting back into our derivative: \[ \frac{dy}{dx} = -\frac{1}{1 + \left(\frac{1-x}{1+x}\right)^2} \cdot \left(-\frac{2}{(1+x)^2}\right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{2}{(1+x)^2 \left(1 + \left(\frac{1-x}{1+x}\right)^2\right)} \] ### Step 5: Simplify the expression Now we need to simplify \( 1 + \left(\frac{1-x}{1+x}\right)^2 \): \[ 1 + \left(\frac{1-x}{1+x}\right)^2 = 1 + \frac{(1-x)^2}{(1+x)^2} = \frac{(1+x)^2 + (1-x)^2}{(1+x)^2} \] Calculating the numerator: \[ (1+x)^2 + (1-x)^2 = 1 + 2x + x^2 + 1 - 2x + x^2 = 2 + 2x^2 \] Thus, \[ 1 + \left(\frac{1-x}{1+x}\right)^2 = \frac{2 + 2x^2}{(1+x)^2} \] ### Step 6: Substitute back into the derivative Now substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{2}{(1+x)^2} \cdot \frac{(1+x)^2}{2 + 2x^2} = \frac{2}{2 + 2x^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{1}{1 + x^2} \] ### Final Answer Thus, the derivative of \( y = \cot^{-1}\left(\frac{1-x}{1+x}\right) \) is: \[ \frac{dy}{dx} = \frac{1}{1 + x^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[cot^(-1)sqrt((x)/(1-x))]=

Find (d)/(dx)cot^(-1)((1-x^(2))/(2x))

d/(dx)tan^-1((1-x)/(1+x))=

If (d)/(dx)[cot^(-1)(x+1)]+(d)/(dx)(tan^(-1)x)=(d)/(dx)(tan^(-1)u)," then "u=

Differentiate the following with respect to x:cos^(-1)(sin x) and cot^(-1)((1-x)/(1+x))

Prove that (d)/(dx)(cot^(-1)x)=(-1)/((1+x^(2))) , where x in R .

Differentiate w.r.t. x : (i)cot^(-1)((1)/(x))" "(ii)tan^(-1)((2x)/(1-x^(2)))" "(iii)cot^(-1)((1-x)/(1+x))

(d)/(dx)[cot^-1((1+sqrt(1-x^(2)))/(x))]=