Home
Class 12
MATHS
(d)/(dx)[sin^(-1)((3cosx+4sinx)/(5))]=...

`(d)/(dx)[sin^(-1)((3cosx+4sinx)/(5))]=`

A

1

B

0

C

`-1`

D

`pm1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin^{-1}\left(\frac{3\cos x + 4\sin x}{5}\right) \), we will follow these steps: ### Step 1: Define the function Let: \[ y = \sin^{-1}\left(\frac{3\cos x + 4\sin x}{5}\right) \] ### Step 2: Differentiate using the chain rule Using the chain rule, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(\frac{3\cos x + 4\sin x}{5}\right)^2}} \cdot \frac{d}{dx}\left(\frac{3\cos x + 4\sin x}{5}\right) \] ### Step 3: Differentiate the inner function Now we differentiate the inner function \( \frac{3\cos x + 4\sin x}{5} \): \[ \frac{d}{dx}\left(\frac{3\cos x + 4\sin x}{5}\right) = \frac{1}{5} \left(-3\sin x + 4\cos x\right) \] ### Step 4: Substitute back into the derivative Now substitute this back into the derivative: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(\frac{3\cos x + 4\sin x}{5}\right)^2}} \cdot \frac{1}{5} \left(-3\sin x + 4\cos x\right) \] ### Step 5: Simplify the expression Next, we need to simplify the expression inside the square root: \[ 1 - \left(\frac{3\cos x + 4\sin x}{5}\right)^2 = 1 - \frac{(3\cos x + 4\sin x)^2}{25} \] Expanding \( (3\cos x + 4\sin x)^2 \): \[ (3\cos x + 4\sin x)^2 = 9\cos^2 x + 24\cos x \sin x + 16\sin^2 x \] Thus, \[ 1 - \frac{9\cos^2 x + 24\cos x \sin x + 16\sin^2 x}{25} = \frac{25 - (9\cos^2 x + 24\cos x \sin x + 16\sin^2 x)}{25} \] ### Step 6: Final expression for \( \frac{dy}{dx} \) Now we can write the final expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{-3\sin x + 4\cos x}{5\sqrt{\frac{25 - (9\cos^2 x + 24\cos x \sin x + 16\sin^2 x)}{25}}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-3\sin x + 4\cos x}{\sqrt{25 - (9\cos^2 x + 24\cos x \sin x + 16\sin^2 x)}} \] ### Step 7: Evaluate the expression To find the specific value of \( \frac{dy}{dx} \), we can evaluate it at specific points or simplify further based on the context of the problem.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[sin^(-1)((3x-x^(3))/(2))]

(d)/(dx)(sin{2cos^(-1)(sinx)}]=

(d)/(dx)cos^(-1)(sin x)=

(d)/(dx)[sin^(-1)(x-(4x^(3))/(27))]=4x327dx

(d)/(dx)[cos^(2)x(3-4cos^(2)x)^(2)]+(d)/(dx)[sin^(2)(3-4sin^(2)x)^(2)]=

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

(d)/(dx)(sinx-(1)/(3)sin^(3)x)=

Find (d)/(dx)sin^(-1)(3x-4x^(3))=

(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]

(d)/(dx)[sin^(-1){cos(x^(2)-2)}]=