Home
Class 12
MATHS
(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=...

`(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=`

A

`(-1)/(1+x^(2))`

B

`(1)/(2(1+x^(2)))`

C

`(1)/(sqrt(1+x^(2)))`

D

`(1)/(2sqrt(1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \), we can follow these steps: ### Step 1: Define the function Let \[ y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \] ### Step 2: Differentiate using the chain rule To differentiate \( y \) with respect to \( x \), we will use the chain rule. The derivative of \( \tan^{-1}(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{\sqrt{1+x^2}-1}{x} \). ### Step 3: Find \( u \) and its derivative \( \frac{du}{dx} \) First, we need to differentiate \( u \): \[ u = \frac{\sqrt{1+x^2}-1}{x} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{x \cdot \frac{d}{dx}(\sqrt{1+x^2}-1) - (\sqrt{1+x^2}-1) \cdot \frac{d}{dx}(x)}{x^2} \] Calculating \( \frac{d}{dx}(\sqrt{1+x^2}) \): \[ \frac{d}{dx}(\sqrt{1+x^2}) = \frac{x}{\sqrt{1+x^2}} \] Thus, \[ \frac{d}{dx}(\sqrt{1+x^2}-1) = \frac{x}{\sqrt{1+x^2}} \] Now substituting back into the expression for \( \frac{du}{dx} \): \[ \frac{du}{dx} = \frac{x \cdot \frac{x}{\sqrt{1+x^2}} - \left(\sqrt{1+x^2}-1\right)}{x^2} \] \[ = \frac{\frac{x^2}{\sqrt{1+x^2}} - \sqrt{1+x^2} + 1}{x^2} \] \[ = \frac{1 - \sqrt{1+x^2} + \frac{x^2}{\sqrt{1+x^2}}}{x^2} \] ### Step 4: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula Now we substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{\sqrt{1+x^2}-1}{x}\right)^2} \cdot \frac{du}{dx} \] ### Step 5: Simplify \( 1 + u^2 \) Calculating \( 1 + u^2 \): \[ u^2 = \left(\frac{\sqrt{1+x^2}-1}{x}\right)^2 = \frac{(1+x^2) - 2\sqrt{1+x^2} + 1}{x^2} = \frac{2 - 2\sqrt{1+x^2}}{x^2} \] Thus, \[ 1 + u^2 = 1 + \frac{2 - 2\sqrt{1+x^2}}{x^2} = \frac{x^2 + 2 - 2\sqrt{1+x^2}}{x^2} \] ### Step 6: Final expression for \( \frac{dy}{dx} \) Now we can substitute everything back into the derivative: \[ \frac{dy}{dx} = \frac{x^2}{x^2 + 2 - 2\sqrt{1+x^2}} \cdot \frac{du}{dx} \] ### Step 7: Evaluate \( \frac{dy}{dx} \) After simplifying, we find: \[ \frac{dy}{dx} = \frac{1}{2(1+x^2)} \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = \frac{1}{2(1+x^2)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)[tan^(-1)((x-sqrt(a^(2)-x^(2)))/(x+sqrt(a^(2)-x^(2))))]=

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)[tan^(-1)sqrt(1+x^(2))-cot^(-1)(-sqrt(1+x^(2)))]=

Find (d)/(dx)tan^(-1)((x)/(1+sqrt(1-x^(2))))

(d)/(dx)[tan^(-1)((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))^((1)/(2))] is equal to

(d)/(dx)[sin(2tan^(-1)sqrt((1+x)/(1-x)))]=

(d)/(dx)tan^(-1)((sqrt(x)-x)/(1+x^((3)/(2))))=

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx)(tan^(-1)(birth x))