Home
Class 12
MATHS
(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]...

`(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=`

A

`(1)/(2(1+x^(2)))`

B

`(1)/(1+x^(2))`

C

`(-1)/(1+x^(2))`

D

`(1)/(2sqrt(1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\frac{x}{1 - \sqrt{1 + x^2}}\right) \), we will follow a series of steps involving trigonometric substitution and differentiation. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \tan(\theta) \). Then, we have: \[ \sqrt{1 + x^2} = \sqrt{1 + \tan^2(\theta)} = \sec(\theta) \] Therefore, we can rewrite the function: \[ y = \tan^{-1}\left(\frac{\tan(\theta)}{1 - \sec(\theta)}\right) \] 2. **Simplifying the Argument**: The expression inside the arctangent becomes: \[ \frac{\tan(\theta)}{1 - \sec(\theta)} = \frac{\tan(\theta)}{1 - \frac{1}{\cos(\theta)}} = \frac{\tan(\theta)}{\frac{\cos(\theta) - 1}{\cos(\theta)}} = \frac{\tan(\theta) \cdot \cos(\theta)}{\cos(\theta) - 1} \] Using the identity \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \), we get: \[ \frac{\sin(\theta)}{\cos(\theta) - 1} \] 3. **Differentiating**: Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{\sin(\theta)}{\cos(\theta) - 1}\right)^2} \cdot \frac{d}{dx}\left(\frac{\sin(\theta)}{\cos(\theta) - 1}\right) \] 4. **Finding the Derivative of the Inner Function**: We need to apply the chain rule and the quotient rule here. The derivative of \( \sin(\theta) \) with respect to \( x \) is: \[ \frac{d}{dx}(\sin(\theta)) = \cos(\theta) \cdot \frac{d\theta}{dx} \] and for \( \cos(\theta) - 1 \): \[ \frac{d}{dx}(\cos(\theta) - 1) = -\sin(\theta) \cdot \frac{d\theta}{dx} \] Thus, using the quotient rule: \[ \frac{d}{dx}\left(\frac{\sin(\theta)}{\cos(\theta) - 1}\right) = \frac{(\cos(\theta)(\cos(\theta) - 1) - \sin(\theta)(-\sin(\theta)))}{(\cos(\theta) - 1)^2} \cdot \frac{d\theta}{dx} \] 5. **Finding \( \frac{d\theta}{dx} \)**: Since \( x = \tan(\theta) \), we have: \[ \frac{d\theta}{dx} = \frac{1}{1 + x^2} \] 6. **Combining Everything**: Substitute \( \frac{d\theta}{dx} \) back into the derivative expression and simplify. 7. **Final Result**: After simplification, we find: \[ \frac{dy}{dx} = \frac{1}{2(1 + x^2)} \] ### Final Answer: \[ \frac{d}{dx}\tan^{-1}\left(\frac{x}{1 - \sqrt{1 + x^2}}\right) = \frac{1}{2(1 + x^2)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=

(d)/(dx)[tan^(-1)((10x)/(4-6x^(2)))]=

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx)[tan^(-1)((x-sqrt(a^(2)-x^(2)))/(x+sqrt(a^(2)-x^(2))))]=

d/(dx)tan^-1((1-x)/(1+x))=

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3)) w.r.t tan ^(-1)((x)/(sqrt(1-x^(2))))

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

(d)/(dx)[sec(tan^(-1)x)]=

(d)/(dx)[tan^(-1)((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))^((1)/(2))] is equal to