Home
Class 12
MATHS
(d)/(dx)[cot^(-1)sqrt((x)/(1-x))]=...

`(d)/(dx)[cot^(-1)sqrt((x)/(1-x))]=`

A

`(1)/(sqrt(x(1-x)))`

B

`(-1)/(sqrt(4x(1-x)))`

C

`(-1)/(2sqrt(x(1-x)))`

D

`(1)/(2sqrt(x(1-x^(2))))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx} \left[ \cot^{-1} \left( \sqrt{\frac{x}{1-x}} \right) \right]\), we will use the chain rule and the derivative of the inverse cotangent function. ### Step-by-Step Solution: 1. **Identify the outer and inner functions**: - Outer function: \( f(u) = \cot^{-1}(u) \) - Inner function: \( g(x) = \sqrt{\frac{x}{1-x}} \) 2. **Differentiate the outer function**: The derivative of \( f(u) = \cot^{-1}(u) \) is: \[ f'(u) = -\frac{1}{1 + u^2} \] 3. **Differentiate the inner function**: We need to differentiate \( g(x) = \sqrt{\frac{x}{1-x}} \). First, rewrite it: \[ g(x) = \left( \frac{x}{1-x} \right)^{1/2} \] Now, apply the chain rule: \[ g'(x) = \frac{1}{2} \left( \frac{x}{1-x} \right)^{-1/2} \cdot \frac{d}{dx} \left( \frac{x}{1-x} \right) \] 4. **Differentiate the fraction**: To differentiate \( \frac{x}{1-x} \), use the quotient rule: \[ \frac{d}{dx} \left( \frac{x}{1-x} \right) = \frac{(1-x)(1) - x(-1)}{(1-x)^2} = \frac{1-x + x}{(1-x)^2} = \frac{1}{(1-x)^2} \] 5. **Combine the derivatives**: Now substitute back into the derivative of \( g(x) \): \[ g'(x) = \frac{1}{2} \left( \frac{x}{1-x} \right)^{-1/2} \cdot \frac{1}{(1-x)^2} \] Simplifying gives: \[ g'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{\frac{x}{1-x}}} \cdot \frac{1}{(1-x)^2} = \frac{1}{2} \cdot \frac{\sqrt{1-x}}{\sqrt{x}} \cdot \frac{1}{(1-x)^2} \] 6. **Apply the chain rule**: Now, apply the chain rule: \[ \frac{d}{dx} \left[ \cot^{-1} \left( \sqrt{\frac{x}{1-x}} \right) \right] = f'(g(x)) \cdot g'(x) \] Substituting \( g(x) \) and \( g'(x) \): \[ = -\frac{1}{1 + \left( \sqrt{\frac{x}{1-x}} \right)^2} \cdot g'(x) \] 7. **Simplify the expression**: Note that: \[ \left( \sqrt{\frac{x}{1-x}} \right)^2 = \frac{x}{1-x} \] Thus: \[ 1 + \frac{x}{1-x} = \frac{1-x + x}{1-x} = \frac{1}{1-x} \] Therefore: \[ -\frac{1}{\frac{1}{1-x}} = -(1-x) \] 8. **Final expression**: Combine everything: \[ \frac{d}{dx} \left[ \cot^{-1} \left( \sqrt{\frac{x}{1-x}} \right) \right] = -(1-x) \cdot \frac{1}{2} \cdot \frac{\sqrt{1-x}}{\sqrt{x}} \cdot \frac{1}{(1-x)^2} \] Simplifying gives: \[ = -\frac{1}{2} \cdot \frac{\sqrt{1-x}}{\sqrt{x}(1-x)} \] ### Final Answer: \[ \frac{d}{dx} \left[ \cot^{-1} \left( \sqrt{\frac{x}{1-x}} \right) \right] = -\frac{1}{2} \cdot \frac{\sqrt{1-x}}{\sqrt{x}(1-x)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[cot^(-1)((1-x)/(1+x))]=

(d)/(dx)cot^(-1)((1+x)/(1-x))=

(d)/(dx)[sin^(2)cot^(-1)sqrt((1-x)/(1+x))] is

(d)/(dx)cot^(-1)((1+x)/(1-x)) is equal to,if x<-1

Find (d)/(dx)cot^(-1)((1-x^(2))/(2x))

Solution of the differential equation (y+x sqrt(xy)(x+y))dx+(y sqrt(xy)(x+y)-x)dy=0 is (A) (x^(2)+y^(2))/(2)+tan^(-1)sqrt((y)/(x))=lambda (B) (x^(2)+y^(2))/(2)+2tan^(-1)(sqrt((x)/(y)))=lambda (C) (x^(2)+y^(2))/(2)+2cot^(-1)sqrt((y)/(x))=lambda (D) (x^(2)+y^(2))/(2)+cot^(-1)sqrt((x)/(y))=lambda

(d)/(dx)[cot^-1((1+sqrt(1-x^(2)))/(x))]=

d//dx[sin^(2)cot^(-1)""(1)/(sqrt((1+x)/(1-x)))] , is equal to -