Home
Class 12
MATHS
(d)/(dx)[sec(tan^(-1)x)]=...

`(d)/(dx)[sec(tan^(-1)x)]=`

A

`(x)/(sqrt(1+x^(2)))`

B

`(-x)/(sqrt(1+x^(2)))`

C

`(sqrt(1+x^(2)))/(x)`

D

`-(sqrt(1+x^(2)))/(x)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[sec(2x^(2))]

(d)/(dx)(sec^(-1)x)

If (d)/(dx)[cot^(-1)(x+1)]+(d)/(dx)(tan^(-1)x)=(d)/(dx)(tan^(-1)u)," then "u=

d/dx(tan^(-1)x) is :

(d)/(dx)[log(sec x+tan x)]=

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

(d)/(dx)(tan^(-1)(birth x))

(d)/(dx)[tan{tan^(-1)((x)/(a))-tan^(-1)((x-a)/(x+a))}]=

(d)/(dx)[sec{cos^(-1) ((x)/(8))}] is equal to

int_(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=