Home
Class 12
MATHS
If y=cos^(-1)((x^(2n)-1)/(x^(2n)+1)))," ...

If `y=cos^(-1)((x^(2n)-1)/(x^(2n)+1)))," then "(1+x^(2n))y_(1)=`

A

`-2nx^(n)`

B

`2nx^(n)`

C

`-2nx^(n-1)`

D

`2nx^(n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to differentiate the function \( y = \cos^{-1} \left( \frac{x^{2n} - 1}{x^{2n} + 1} \right) \) and then find \( (1 + x^{2n}) y' \). ### Step 1: Differentiate \( y \) Using the chain rule, the derivative of \( y \) with respect to \( x \) is given by: \[ y' = \frac{d}{dx} \left( \cos^{-1}(u) \right) \quad \text{where } u = \frac{x^{2n} - 1}{x^{2n} + 1} \] The derivative of \( \cos^{-1}(u) \) is: \[ \frac{dy}{du} = -\frac{1}{\sqrt{1 - u^2}} \] Now we need to find \( \frac{du}{dx} \): \[ u = \frac{x^{2n} - 1}{x^{2n} + 1} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{(x^{2n} + 1)(2nx^{2n-1}) - (x^{2n} - 1)(2nx^{2n-1})}{(x^{2n} + 1)^2} \] Simplifying the numerator: \[ = \frac{(2nx^{2n-1})(x^{2n} + 1 - x^{2n} + 1)}{(x^{2n} + 1)^2} = \frac{(2nx^{2n-1})(2)}{(x^{2n} + 1)^2} = \frac{4nx^{2n-1}}{(x^{2n} + 1)^2} \] Now substituting \( u \) and \( \frac{du}{dx} \) back into the derivative of \( y \): \[ y' = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} = -\frac{1}{\sqrt{1 - \left( \frac{x^{2n} - 1}{x^{2n} + 1} \right)^2}} \cdot \frac{4nx^{2n-1}}{(x^{2n} + 1)^2} \] ### Step 2: Simplify \( 1 - u^2 \) Now we need to simplify \( 1 - u^2 \): \[ 1 - u^2 = 1 - \left( \frac{x^{2n} - 1}{x^{2n} + 1} \right)^2 = \frac{(x^{2n} + 1)^2 - (x^{2n} - 1)^2}{(x^{2n} + 1)^2} \] Calculating the numerator: \[ = (x^{2n} + 1)^2 - (x^{2n} - 1)^2 = (x^{4n} + 2x^{2n} + 1) - (x^{4n} - 2x^{2n} + 1) = 4x^{2n} \] Thus, \[ 1 - u^2 = \frac{4x^{2n}}{(x^{2n} + 1)^2} \] ### Step 3: Substitute back into \( y' \) Now substituting back into the expression for \( y' \): \[ y' = -\frac{1}{\sqrt{\frac{4x^{2n}}{(x^{2n} + 1)^2}}} \cdot \frac{4nx^{2n-1}}{(x^{2n} + 1)^2} \] This simplifies to: \[ y' = -\frac{(x^{2n} + 1)}{2\sqrt{x^{2n}}} \cdot \frac{4nx^{2n-1}}{(x^{2n} + 1)^2} = -\frac{2n \cdot 2x^{2n-1}}{(x^{2n} + 1)\sqrt{x^{2n}}} \] ### Step 4: Find \( (1 + x^{2n})y' \) Now we need to find \( (1 + x^{2n})y' \): \[ (1 + x^{2n})y' = (1 + x^{2n}) \left( -\frac{2n \cdot 2x^{2n-1}}{(x^{2n} + 1)\sqrt{x^{2n}}} \right) \] This simplifies to: \[ = -\frac{4n \cdot x^{2n-1}(1 + x^{2n})}{(x^{2n} + 1)\sqrt{x^{2n}}} = -\frac{4n \cdot x^{2n-1}}{\sqrt{x^{2n}}} \] ### Final Result Thus, the final result is: \[ (1 + x^{2n})y' = -\frac{4n \cdot x^{n-1}}{1} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)((1-x^(2n))/(1+x^(2n)))

If 2x=y^(1//n)," then: "x^(2)(y_(1))^(2)=

Prove that cos^(-1)((1-x^(2n))/(1+x^(2n)))=2tan^(-1)x^(n),0

If y^((1)/(n))+y^(-(1)/(n))=2x then (x^(2)-1)y_(2)+xy_(1) is equal to

If x+1/x=-2 then x^(2n+1)+1/(x)^(2n+1)=

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+...+(x^(n))/(n!), then (dy)/(dx) is equal to (a) y(b)y+(x^(n))/(n!)(c)y-(x^(n))/(n!) (d) y-1-(x^(n))/(n!)

If sqrt(1-x^(2n))+sqrt(1-y^(2n))=a^(n)(x^(n)-y^(n)) prove that y^(n-1)*sqrt(1-x^(2n))dy=x^(n-1)sqrt(1-y^(2n))dx

If y=e^(a sin^(-1)x) then show that (1-x^(2))y_(n+2)-(2n+1)xy_(n+1)-(n^(2)+a^(2))y_(n)=0

Let y_(n)(x)=x^(2)+(x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+...(x^(2))/((1+x^(2))^(n-1)) and y(x)=lim_(x rarr oo)y_(n)(x) Discuss the continuity of y_(n)(x)(n=1,2,3dots n) and y(x)atx=0

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If y=cos^(-1)((x^(2n)-1)/(x^(2n)+1)))," then "(1+x^(2n))y(1)=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |