Home
Class 12
MATHS
If x^(2)y^(3)=(x+y)^(n+2) and (dy)/(dx)=...

If `x^(2)y^(3)=(x+y)^(n+2)` and `(dy)/(dx)=y/x` then `n=`

A

2

B

3

C

6

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation and the derivative condition: 1. **Given Equations**: \[ x^2 y^3 = (x + y)^{n + 2} \] \[ \frac{dy}{dx} = \frac{y}{x} \] 2. **Differentiate Both Sides**: We will differentiate the left-hand side using the product rule and the right-hand side using the chain rule. - **Left-hand Side**: \[ \frac{d}{dx}(x^2 y^3) = 2xy^3 + 3x^2y^2 \frac{dy}{dx} \] - **Right-hand Side**: \[ \frac{d}{dx}((x + y)^{n + 2}) = (n + 2)(x + y)^{n + 1} \left(1 + \frac{dy}{dx}\right) \] 3. **Substituting \(\frac{dy}{dx}\)**: Substitute \(\frac{dy}{dx} = \frac{y}{x}\) into the differentiated equations: - **Left-hand Side**: \[ 2xy^3 + 3x^2y^2 \left(\frac{y}{x}\right) = 2xy^3 + 3xy^2y = 2xy^3 + 3xy^3 = 5xy^3 \] - **Right-hand Side**: \[ (n + 2)(x + y)^{n + 1} \left(1 + \frac{y}{x}\right) = (n + 2)(x + y)^{n + 1} \left(\frac{x + y}{x}\right) = (n + 2)(x + y)^{n + 1} \frac{x + y}{x} \] 4. **Equating Both Sides**: Now we equate the left-hand side and right-hand side: \[ 5xy^3 = (n + 2)(x + y)^{n + 1} \frac{x + y}{x} \] 5. **Simplifying the Equation**: Rearranging gives: \[ 5xy^3 = (n + 2)(x + y)^{n + 2} \frac{1}{x} \] Multiplying through by \(x\): \[ 5x^2y^3 = (n + 2)(x + y)^{n + 2} \] 6. **Comparing Coefficients**: Since we know \(x^2 y^3\) is on both sides, we can compare coefficients: \[ 5 = n + 2 \] 7. **Solving for \(n\)**: \[ n = 5 - 2 = 3 \] Thus, the value of \(n\) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If x^(3)y^(4)=(x+y)^(n)" and "(dy)/(dx)=(y)/(x)," then "n=

If x^(3)y^(4)=(x+y)^(n+1)and(dy)/(dx)=(y)/(x),"then n = ......"

If x^(3)=(x+y)^(n)*y^(2)" and "(dy)/(dx)=(y)/(x)," then: "n=

If x^(n) y^(n) =(x+y) ^(n),then (dy)/(dx)=

xy=(x+y)^(n) and (dy)/(dx)=(y)/(x) thenn =1b.2c3d.4

If x ^(n) y^(n) =( x+y ) ^(n),then (dy)/(dx)=

If x^(m)*y^(n)=(x+y)^(m+n) then (dy)/(dx) is:

If x^(m)y^(n)=(x+y)^(m+n) prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)