Home
Class 12
MATHS
(d)/(dx)(cosx-(1)/(3)cos^(3)x)=...

`(d)/(dx)(cosx-(1)/(3)cos^(3)x)=`

A

`sin^(2)x`

B

`cos^(2)x`

C

`-sin^(3)x`

D

`- cos^(3)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left(\cos x - \frac{1}{3}\cos^3 x\right)\), we will differentiate each term step by step. ### Step-by-Step Solution: 1. **Identify the function to differentiate:** \[ y = \cos x - \frac{1}{3}\cos^3 x \] 2. **Differentiate the first term:** The derivative of \(\cos x\) is: \[ \frac{d}{dx}(\cos x) = -\sin x \] 3. **Differentiate the second term using the chain rule:** For the term \(-\frac{1}{3}\cos^3 x\), we apply the chain rule. Let \(u = \cos x\), then: \[ \frac{d}{dx}\left(-\frac{1}{3}u^3\right) = -\frac{1}{3} \cdot 3u^2 \cdot \frac{du}{dx} \] Here, \(\frac{du}{dx} = -\sin x\), so: \[ \frac{d}{dx}\left(-\frac{1}{3}\cos^3 x\right) = -\frac{1}{3} \cdot 3\cos^2 x \cdot (-\sin x) = \cos^2 x \sin x \] 4. **Combine the derivatives:** Now, we combine the derivatives of both terms: \[ \frac{dy}{dx} = -\sin x + \cos^2 x \sin x \] 5. **Factor out \(-\sin x\):** We can factor out \(-\sin x\) from the expression: \[ \frac{dy}{dx} = -\sin x (1 - \cos^2 x) \] 6. **Use the Pythagorean identity:** Recall that \(1 - \cos^2 x = \sin^2 x\): \[ \frac{dy}{dx} = -\sin x \cdot \sin^2 x \] 7. **Final result:** Thus, we have: \[ \frac{dy}{dx} = -\sin^3 x \] ### Final Answer: \[ \frac{d}{dx}\left(\cos x - \frac{1}{3}\cos^3 x\right) = -\sin^3 x \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)((sinx)/(1+cosx))=

(d)/(dx)((cosx)/(1+sinx))=

(d)/(dx)((cosx+sinx)/(cosx-sinx))=

Find the general solution of each of the following differential equations: (dy)/(dx)=(1-cos x)/(1+cosx)

(d^(2))/(dx^(2))(2cosx*cos3x)=

(d)/(dx)cos^(-1)sqrt(cosx),0ltxlt(pi)/(2) is equal to

(d)/(dx)[sin^(-1)((3cosx+4sinx)/(5))]=

(d)/(dx)[tan^(-1)((sinx)/(1+cosx))]=

d/(dx)(x^(2) + cosx)^(4) =

At x=(pi)/(4),(d)/(dx)[tan^(-1)((cosx)/(1+sinx))]=