Home
Class 12
MATHS
(d)/(dx)(sinx-(1)/(3)sin^(3)x)=...

`(d)/(dx)(sinx-(1)/(3)sin^(3)x)=`

A

`sin^(2)x`

B

`cos^(2)x`

C

`-sin^(3)x`

D

`(3cosx+cos3x)//4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = \sin x - \frac{1}{3} \sin^3 x \), we will apply the rules of differentiation step by step. ### Step 1: Differentiate \( \sin x \) The derivative of \( \sin x \) is \( \cos x \). \[ \frac{d}{dx}(\sin x) = \cos x \] ### Step 2: Differentiate \( -\frac{1}{3} \sin^3 x \) To differentiate \( -\frac{1}{3} \sin^3 x \), we will use the chain rule. The derivative of \( u^n \) is \( n u^{n-1} \cdot \frac{du}{dx} \), where \( u = \sin x \) and \( n = 3 \). 1. Differentiate the outer function \( -\frac{1}{3} u^3 \): \[ \frac{d}{dx}\left(-\frac{1}{3} \sin^3 x\right) = -\frac{1}{3} \cdot 3 \sin^2 x \cdot \frac{d}{dx}(\sin x) \] This simplifies to: \[ -\sin^2 x \cdot \cos x \] ### Step 3: Combine the results Now we combine the derivatives from Step 1 and Step 2: \[ \frac{d}{dx}\left(\sin x - \frac{1}{3} \sin^3 x\right) = \cos x - \sin^2 x \cdot \cos x \] ### Step 4: Factor out \( \cos x \) We can factor out \( \cos x \) from the expression: \[ \cos x - \sin^2 x \cdot \cos x = \cos x (1 - \sin^2 x) \] ### Step 5: Simplify using the Pythagorean identity Using the Pythagorean identity \( 1 - \sin^2 x = \cos^2 x \), we can simplify further: \[ \cos x (1 - \sin^2 x) = \cos x \cdot \cos^2 x \] ### Final Answer Thus, the derivative is: \[ \frac{d}{dx}\left(\sin x - \frac{1}{3} \sin^3 x\right) = \cos^3 x \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(sin{2cos^(-1)(sinx)}]=

(d)/(dx)((sinx)/(1+cosx))=

(d)/(dx)((cosx)/(1+sinx))=

(d)/(dx)[sin^(-1)((3cosx+4sinx)/(5))]=

If u=(x)/(2)," then "(d)/(dx)[(2sinx-sin2x)/(2sinx+sin2x)]=

(d)/(dx)((cosx+sinx)/(cosx-sinx))=

d/dx(sinx^2)=?

If (d)/(dx)((x)/(sinx))=

(d)/(dx)sinx^(3) = _____.

(d)/(dx)[log(sqrt((1+sinx)/(1-sinx)))]=