Home
Class 12
MATHS
If (d)/(dx)(tanx+(2)/(3)tan^(3)x+(1)/(5)...

If `(d)/(dx)(tanx+(2)/(3)tan^(3)x+(1)/(5)tan^(5)x)=sec^nx," then "n=`

A

7

B

6

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the expression \( \tan x + \frac{2}{3} \tan^3 x + \frac{1}{5} \tan^5 x \) and set it equal to \( \sec^n x \). We will find the value of \( n \). ### Step-by-Step Solution: 1. **Differentiate each term separately**: \[ \frac{d}{dx} \left( \tan x + \frac{2}{3} \tan^3 x + \frac{1}{5} \tan^5 x \right) = \frac{d}{dx} (\tan x) + \frac{2}{3} \frac{d}{dx} (\tan^3 x) + \frac{1}{5} \frac{d}{dx} (\tan^5 x) \] 2. **Apply the derivative of \( \tan x \)**: \[ \frac{d}{dx} (\tan x) = \sec^2 x \] 3. **Use the chain rule for \( \tan^3 x \) and \( \tan^5 x \)**: - For \( \tan^3 x \): \[ \frac{d}{dx} (\tan^3 x) = 3 \tan^2 x \cdot \sec^2 x \] - For \( \tan^5 x \): \[ \frac{d}{dx} (\tan^5 x) = 5 \tan^4 x \cdot \sec^2 x \] 4. **Substituting back into the differentiation**: \[ \sec^2 x + \frac{2}{3} \cdot 3 \tan^2 x \sec^2 x + \frac{1}{5} \cdot 5 \tan^4 x \sec^2 x \] Simplifying this gives: \[ \sec^2 x + 2 \tan^2 x \sec^2 x + \tan^4 x \sec^2 x \] 5. **Factor out \( \sec^2 x \)**: \[ \sec^2 x \left( 1 + 2 \tan^2 x + \tan^4 x \right) \] 6. **Recognize the expression in the parentheses**: The expression \( 1 + 2 \tan^2 x + \tan^4 x \) can be rewritten as: \[ (1 + \tan^2 x)^2 \] Therefore, we have: \[ \sec^2 x (1 + \tan^2 x)^2 \] 7. **Using the identity \( 1 + \tan^2 x = \sec^2 x \)**: \[ \sec^2 x (\sec^2 x)^2 = \sec^2 x \cdot \sec^4 x = \sec^6 x \] 8. **Setting the result equal to \( \sec^n x \)**: \[ \sec^6 x = \sec^n x \] This implies: \[ n = 6 \] ### Final Answer: \[ n = 6 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If (d)/(dx)(x-tanx+(1)/(3)tan^(3)x)=tan^(n)x," then "n=

(d)/(dx) ((1)/(3)tan^(3)x-tan x+x) =

(d)/(dx)[tan^(-1)((2+3tanx)/(3-2tanx))]=

(d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=

(d)/(dx)[sec(tan^(-1)x)]=

(d)/(dx)[tan^(-1)[(secx-tanx)]=

(d)/(dx)(tan^(-1)(sec x+tan x))=...

Derive d/dx(tanx)=sec^2 x

d/(dx)(e^sqrt(1-x^2).tanx)=

int sec^(3)x tan^5 xdx

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If (d)/(dx)(tanx+(2)/(3)tan^(3)x+(1)/(5)tan^(5)x)=sec^nx," then "n=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |