Home
Class 12
MATHS
If y=log(e^(-x)+xe^(-x))," then " (1+x)y...

If `y=log(e^(-x)+xe^(-x))," then " (1+x)y_(1)=`

A

`-x`

B

x

C

2x

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=xe^(y)," then "x(1-y)y_(1)=

If y=(log)_(e)((x)/(a+bx))^(x), then x^(3)y_(2)=(xy_(1)-y)^(2)(b)(1+y)^(2)(c)((y-xy_(1))/(y_(1)))^(2) (d) none of these

If y=xe^(-1//x)," then "x^(3)y_(2)-xy_(1)=

if y=log(e^(2x)+sqrt(1+e^(4x))) and y_(1)sqrt(1+e^(4x))=me^(mx) then m=

If x^(y)=e^(x-y), then (dy)/(dx) is (1+x)/(1+log x)(b)(1-log x)/(1+log x)(c) not defined (d) (log x)/((1+log x)^(2))

If y=tan^(-1)[(log(e//x^(3)))/(log(ex^(3)))]+tan^(-1)[(log(e^(4)x^(3)))/(log(e//x^(12)))]," then "(d^(2)y)/(dx^(2))=

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)