Home
Class 12
MATHS
(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]...

`(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]`

A

`(1)/(sqrt(1-2^(x)))`

B

`(log)/(sqrt(1-4^(x)))`

C

`(2^(x+1)log2)/(1+4^(x))`

D

`(log2)/(sqrt(1-2^(x)))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin^{-1}\left(\frac{2^{x+1}}{1 + 4^x}\right) \), we can follow these steps: ### Step 1: Simplify the Argument First, we simplify the argument of the inverse sine function: \[ \frac{2^{x+1}}{1 + 4^x} = \frac{2 \cdot 2^x}{1 + (2^2)^x} = \frac{2 \cdot 2^x}{1 + 2^{2x}}. \] ### Step 2: Use the Identity for Sine Next, we can express the fraction in terms of tangent: \[ \frac{2 \cdot 2^x}{1 + 2^{2x}} = \frac{2 \tan(\theta)}{1 + \tan^2(\theta)} = \sin(2\theta), \] where we let \( 2^x = \tan(\theta) \). Thus, we can rewrite our function as: \[ y = \sin^{-1}(\sin(2\theta)). \] ### Step 3: Simplify the Inverse Sine Since \( \sin^{-1}(\sin(2\theta)) = 2\theta \) (for \( \theta \) in the appropriate range), we have: \[ y = 2\theta. \] ### Step 4: Find \( \theta \) in Terms of \( x \) Recall that \( \theta = \tan^{-1}(2^x) \). Therefore: \[ y = 2 \tan^{-1}(2^x). \] ### Step 5: Differentiate \( y \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\tan^{-1}(2^x)). \] Using the derivative of \( \tan^{-1}(u) \), which is \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \), we have: \[ \frac{d}{dx}(\tan^{-1}(2^x)) = \frac{1}{1 + (2^x)^2} \cdot \frac{d}{dx}(2^x). \] ### Step 6: Differentiate \( 2^x \) The derivative of \( 2^x \) is: \[ \frac{d}{dx}(2^x) = 2^x \ln(2). \] ### Step 7: Combine the Results Now substituting back, we get: \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1 + 4^x} \cdot (2^x \ln(2)). \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = \frac{2 \cdot 2^x \ln(2)}{1 + 4^x}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[sin^(-1)((3x-x^(3))/(2))]

Differentiate w.r.t x:sin^(-1)((2^(x+1))/(1+4^(x)))

Knowledge Check

  • (d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

    A
    `(1)/(sqrt(1-x^(2)))`
    B
    `(-1)/(sqrt(1-x^(2)))`
    C
    `(-1)/(2sqrt(1-x^(2)))`
    D
    `(1)/(sqrt(2(1-x^(2))))`
  • (d)/(dx)[sin^(-1)(x^(2)-(1)/(2))]" at "x=0

    A
    1
    B
    `-1`
    C
    0
    D
    2
  • (d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

    A
    `(-2x)/(sqrt(1-x^(2)))`
    B
    `(-x)/(sqrt(1-x^(2)))`
    C
    0
    D
    `(x)/(2)`
  • Similar Questions

    Explore conceptually related problems

    (d)/(dx)[sin^(-1)(x-(4x^(3))/(27))]=4x327dx

    (d)/(dx)cos^(-1)(sin x)=

    differentiate sin^(-1)((2^(x-1))/(1+4^(x)))w*r.t.x

    Differentiate sin^(-1)((2^(x+1))/(1+4^(x))) with respect to x

    (d)/(dx)[sin^(-1){cos(x^(2)-2)}]=