Home
Class 12
MATHS
If (d)/(dx)[log(10)(log(10)x)]=(log(10)e...

If `(d)/(dx)[log_(10)(log_(10)x)]=(log_(10)e)/(f(x))," then "f(x)=`

A

`log_(10)x`

B

`log_(x)10`

C

`xlog_(10)x`

D

`xlogx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given that \[ \frac{d}{dx}\left[\log_{10}(\log_{10} x)\right] = \frac{\log_{10} e}{f(x)}. \] ### Step 1: Simplify the Expression First, we can simplify the left-hand side. We know that: \[ \log_{10}(\log_{10} x) = \frac{\log(\log x)}{\log(10)}. \] Using the change of base formula, we can rewrite it as: \[ \log_{10}(\log_{10} x) = \frac{\log(\log x)}{\log(10)}. \] ### Step 2: Differentiate the Left-Hand Side Now we differentiate \( \log_{10}(\log_{10} x) \): \[ \frac{d}{dx}\left[\log_{10}(\log_{10} x)\right] = \frac{1}{\log(10)} \cdot \frac{d}{dx}[\log(\log x)]. \] Using the chain rule, we differentiate \( \log(\log x) \): \[ \frac{d}{dx}[\log(\log x)] = \frac{1}{\log x} \cdot \frac{d}{dx}[\log x] = \frac{1}{\log x} \cdot \frac{1}{x} = \frac{1}{x \log x}. \] Thus, we have: \[ \frac{d}{dx}\left[\log_{10}(\log_{10} x)\right] = \frac{1}{\log(10)} \cdot \frac{1}{x \log x} = \frac{1}{x \log(10) \log x}. \] ### Step 3: Set the Derivative Equal to the Right-Hand Side Now we set this equal to the right-hand side of the original equation: \[ \frac{1}{x \log(10) \log x} = \frac{\log_{10} e}{f(x)}. \] ### Step 4: Solve for \( f(x) \) To find \( f(x) \), we can cross-multiply: \[ f(x) = \frac{\log_{10} e \cdot x \log x}{1}. \] ### Step 5: Simplify \( f(x) \) We know that \( \log_{10} e = \frac{1}{\log e} \), so we can write: \[ f(x) = x \log x \cdot \log_{10} e. \] However, since we are looking for \( f(x) \) in terms of \( x \log x \), we can conclude that: \[ f(x) = x \log x. \] ### Final Answer Thus, the function \( f(x) \) is: \[ f(x) = x \log x. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[log_(a)x]

(d)/(dx)[tan^(-1)((log(ex))/(log(e//x)))]=(1)/(xf(x))," then "f(x)=

d/(dx)log_|x|e=

(d)/(dx)[log((x)/(e^(cotx)))]=

(d)/(dx)[log((x)/(e^(tan x)))]=

(d)/(dx)[log((x^(n))/(e^(x)))]=

(d)/(dx){log_(e)(ax)^(x)}

(d)/(dx)(log e^(x)*log x)

If x>0, then (d)/(dx){log_(7)(log x)}=

(d)/(dx)(log*sin x)

MARVEL PUBLICATION-DIFFERENTIATION-MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)
  1. If (d)/(dx)[log(10)(log(10)x)]=(log(10)e)/(f(x))," then "f(x)=

    Text Solution

    |

  2. If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

    Text Solution

    |

  3. If 2x=y^(1//n)," then: "x^(2)(y(1))^(2)=

    Text Solution

    |

  4. If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

    Text Solution

    |

  5. If y=sqrt(cos2x)," then: "yy(2)+2y^(2)=

    Text Solution

    |

  6. If x=(t+1)/(t),y=(t-1)/(t)," then: "(dy)/(dx)=

    Text Solution

    |

  7. If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

    Text Solution

    |

  8. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  9. If y=(x^(1/3)-x^(-1/3))then (dy)/(dx) is

    Text Solution

    |

  10. If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

    Text Solution

    |

  11. If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

    Text Solution

    |

  12. d/(dx)[sin^(- 1)(x-(4x^3)/27)]= 4x327dx

    Text Solution

    |

  13. (d)/(dx)(sec^(2)x*csc^(2)x)=

    Text Solution

    |

  14. If y=log((1)/(1-x))," then: "(dy)/(dx)-1=

    Text Solution

    |

  15. If y=4^(log2(sinx))+9^(log3(cosx)," then "(log2(log3)y(1)=

    Text Solution

    |

  16. If y=cos((1)/(2)cos^(-1)x)," then "(dx)/(dy)=

    Text Solution

    |

  17. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  18. If x^(2)=1+cosy," then: "(dy)/(dx)=

    Text Solution

    |

  19. Defferential coefficient of x^(x)w.r.t.x*logx is

    Text Solution

    |

  20. If x=sqrt(y+sqrt(y+sqrt(y+..."to"oo)))," then: "(dy)/(dx)=

    Text Solution

    |

  21. If 3x^(2)+4xy-5y^(2)=0," then: "(dy)/(dx)=

    Text Solution

    |