Home
Class 12
MATHS
If y=(e^(2x)-1)/(e^(2x)+1)," then "(dy)/...

If `y=(e^(2x)-1)/(e^(2x)+1)," then "(dy)/(dx)=`

A

`1+y^(2)`

B

`1-y^(2)`

C

`y^(2)-1`

D

`-(1+y^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = \frac{e^{2x} - 1}{e^{2x} + 1} \), we will use the quotient rule of differentiation. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = e^{2x} - 1 \) and \( v = e^{2x} + 1 \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = e^{2x} - 1 \) - \( v = e^{2x} + 1 \) ### Step 2: Find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) Now, we need to compute the derivatives of \( u \) and \( v \): 1. **Derivative of \( u \)**: \[ \frac{du}{dx} = \frac{d}{dx}(e^{2x} - 1) = 2e^{2x} \] 2. **Derivative of \( v \)**: \[ \frac{dv}{dx} = \frac{d}{dx}(e^{2x} + 1) = 2e^{2x} \] ### Step 3: Apply the Quotient Rule Now, we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{(e^{2x} + 1)(2e^{2x}) - (e^{2x} - 1)(2e^{2x})}{(e^{2x} + 1)^2} \] ### Step 4: Simplify the Expression Now we simplify the numerator: 1. Expand the numerator: \[ = (2e^{2x}(e^{2x} + 1)) - (2e^{2x}(e^{2x} - 1)) \] \[ = 2e^{4x} + 2e^{2x} - (2e^{4x} - 2e^{2x}) \] \[ = 2e^{4x} + 2e^{2x} - 2e^{4x} + 2e^{2x} \] \[ = 4e^{2x} \] 2. Thus, the derivative becomes: \[ \frac{dy}{dx} = \frac{4e^{2x}}{(e^{2x} + 1)^2} \] ### Final Answer The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{4e^{2x}}{(e^{2x} + 1)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y =( e^(x) + 1)/( e^(x)) ,then (dy)/(dx) =

If let y=cos^(-1)((1-e^(2x))/(1+e^(2x)))" then "(dy)/(dx)=

If : y=sqrt((1+e^(x))/(1-e^(x)))," then: "(dy)/(dx)=

If y=(e^(3)-e^(2x))/(e^(3)+e^(2x))," then: "(dy)/(dx)=

If y=e^(x^(2)/(1+x^(2))) , then (dy)/(dx)=

If y = (e^(x)+1)/(e^(x)-1), " then" (y^(2))/2 + (dy)/(dx) is equal to

If e^(2x) +e^(2y) =e^(2( x+y)),then (dy)/(dx)=

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If y=e^(x)x^(2) then (dy)/(dx)=

If y=(e^x-1)/(e^x+1) then find dy/dx