Home
Class 12
MATHS
(d)/(dx)[sin^(-1){cos(x^(2)-2)}]=...

`(d)/(dx)[sin^(-1){cos(x^(2)-2)}]=`

A

x

B

`-x`

C

2x

D

`-2x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \((d)/(dx)[\sin^{-1}(\cos(x^2 - 2))]\), we will follow these steps: ### Step 1: Rewrite the Expression We start with the expression \(\sin^{-1}(\cos(x^2 - 2))\). We can use the identity that relates cosine and sine: \[ \cos(\theta) = \sin\left(\frac{\pi}{2} - \theta\right) \] Thus, we can rewrite \(\sin^{-1}(\cos(x^2 - 2))\) as: \[ \sin^{-1}(\cos(x^2 - 2)) = \sin^{-1}\left(\sin\left(\frac{\pi}{2} - (x^2 - 2)\right)\right) \] This simplifies to: \[ \frac{\pi}{2} - (x^2 - 2) = \frac{\pi}{2} - x^2 + 2 \] ### Step 2: Differentiate the Expression Now we differentiate the expression \(\frac{\pi}{2} - x^2 + 2\): \[ \frac{d}{dx}\left(\frac{\pi}{2} - x^2 + 2\right) \] The derivative of a constant is zero, so we only need to differentiate \(-x^2\): \[ \frac{d}{dx}(-x^2) = -2x \] ### Step 3: Combine the Results Thus, the derivative of \(\sin^{-1}(\cos(x^2 - 2))\) is: \[ -2x \] ### Final Answer Therefore, the final result is: \[ \frac{d}{dx}[\sin^{-1}(\cos(x^2 - 2))] = -2x \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)sin x

(d)/(dx)sin^(2)x

(d)/(dx)sin(x^(x))

(d)/(dx)[sin^(-1)(x^(2)-(1)/(2))]" at "x=0

(d)/(dx)[3(sin^(2)x+cos^(2)x)]=

(d)/(dx)[sin^(-1)((3x-x^(3))/(2))]

(d)/(dx)(sin^(2)x+cos^(2)x) =

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

(d)/(dx)[cos^(2)x(3-4cos^(2)x)^(2)]+(d)/(dx)[sin^(2)(3-4sin^(2)x)^(2)]=

(d)/(dx)[(sin x)/(1+cos x)]=