Home
Class 12
MATHS
(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))...

`(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=`

A

`(-2x)/(sqrt(1-x^(2)))`

B

`(-x)/(sqrt(1-x^(2)))`

C

0

D

`(x)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left[\sin^{-1}x + \sin^{-1}\sqrt{1-x^2}\right]\), we will differentiate each term separately. Let's go through the steps one by one. ### Step 1: Differentiate \(\sin^{-1}x\) The derivative of \(\sin^{-1}x\) is given by the formula: \[ \frac{d}{dx} \sin^{-1}x = \frac{1}{\sqrt{1-x^2}} \] ### Step 2: Differentiate \(\sin^{-1}\sqrt{1-x^2}\) To differentiate \(\sin^{-1}\sqrt{1-x^2}\), we will use the chain rule. Let \(u = \sqrt{1-x^2}\). Then, \[ \frac{d}{dx} \sin^{-1}u = \frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \] First, we need to find \(\frac{du}{dx}\): \[ u = (1-x^2)^{1/2} \implies \frac{du}{dx} = \frac{1}{2}(1-x^2)^{-1/2} \cdot (-2x) = \frac{-x}{\sqrt{1-x^2}} \] Now substituting \(u\) back: \[ \frac{d}{dx} \sin^{-1}\sqrt{1-x^2} = \frac{1}{\sqrt{1-(\sqrt{1-x^2})^2}} \cdot \frac{-x}{\sqrt{1-x^2}} = \frac{1}{\sqrt{1-(1-x^2)}} \cdot \frac{-x}{\sqrt{1-x^2}} \] Simplifying the expression: \[ 1 - (1-x^2) = x^2 \implies \sqrt{x^2} = |x| \quad \text{(since \(x\) can be positive or negative)} \] Thus, \[ \frac{d}{dx} \sin^{-1}\sqrt{1-x^2} = \frac{-x}{|x|\sqrt{1-x^2}} \] ### Step 3: Combine the derivatives Now we can combine the derivatives from Step 1 and Step 2: \[ \frac{d}{dx}\left[\sin^{-1}x + \sin^{-1}\sqrt{1-x^2}\right] = \frac{1}{\sqrt{1-x^2}} + \frac{-x}{|x|\sqrt{1-x^2}} \] ### Step 4: Simplify the expression Combining the two terms: \[ \frac{1}{\sqrt{1-x^2}} - \frac{x}{|x|\sqrt{1-x^2}} \] We can express this as: \[ \frac{1 - \frac{x}{|x|}}{\sqrt{1-x^2}} \] ### Step 5: Analyze the expression Now, depending on the sign of \(x\): - If \(x > 0\), \(|x| = x\) and the expression becomes: \[ \frac{1 - 1}{\sqrt{1-x^2}} = 0 \] - If \(x < 0\), \(|x| = -x\) and the expression becomes: \[ \frac{1 + 1}{\sqrt{1-x^2}} = \frac{2}{\sqrt{1-x^2}} \neq 0 \] ### Conclusion Thus, the derivative \(\frac{d}{dx}\left[\sin^{-1}x + \sin^{-1}\sqrt{1-x^2}\right] = 0\) for \(x > 0\) and is not defined for \(x < 0\). Therefore, the final answer is: \[ \frac{d}{dx}\left[\sin^{-1}x + \sin^{-1}\sqrt{1-x^2}\right] = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

Prove that (d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

(d)/(dx)[sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2))]=

(d)/(dx)[sin(2tan^(-1)sqrt((1+x)/(1-x)))]=

(d)/(dx)[sin^(2)cot^(-1)sqrt((1-x)/(1+x))] is

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

(d)/(dx)cos^(-1)(sin x)=

(d)/(dx)[sin^(-1)(x^(2)-(1)/(2))]" at "x=0

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]

(d)/(dx)[sin^(-1){cos(x^(2)-2)}]=