Home
Class 12
MATHS
If y=cos(x+y)," then "(dy)/(dx)=...

If `y=cos(x+y)," then "(dy)/(dx)=`

A

`(cos(x+y))/(1+sin(x+y))`

B

`(sin(x+y))/(1-sin(x+y))`

C

`(-sin(x+y))/(1+sin(x+y))`

D

`(1+(dy)/(dx))sin(x+y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y = \cos(x + y) \) and find \( \frac{dy}{dx} \), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate both sides with respect to \( x \) Starting with the equation: \[ y = \cos(x + y) \] We differentiate both sides with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}[\cos(x + y)] \] ### Step 2: Apply the chain rule on the right side Using the chain rule, we differentiate \( \cos(x + y) \): \[ \frac{d}{dx}[\cos(x + y)] = -\sin(x + y) \cdot \frac{d}{dx}(x + y) \] ### Step 3: Differentiate \( x + y \) Now, differentiate \( x + y \): \[ \frac{d}{dx}(x + y) = \frac{d}{dx}(x) + \frac{d}{dx}(y) = 1 + \frac{dy}{dx} \] ### Step 4: Substitute back into the equation Substituting back into our differentiation result, we have: \[ \frac{dy}{dx} = -\sin(x + y)(1 + \frac{dy}{dx}) \] ### Step 5: Distribute the right side Distributing \( -\sin(x + y) \) gives: \[ \frac{dy}{dx} = -\sin(x + y) - \sin(x + y) \cdot \frac{dy}{dx} \] ### Step 6: Collect all \( \frac{dy}{dx} \) terms on one side Rearranging the equation to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} + \sin(x + y) \cdot \frac{dy}{dx} = -\sin(x + y) \] Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx}(1 + \sin(x + y)) = -\sin(x + y) \] ### Step 7: Solve for \( \frac{dy}{dx} \) Finally, divide both sides by \( 1 + \sin(x + y) \): \[ \frac{dy}{dx} = \frac{-\sin(x + y)}{1 + \sin(x + y)} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{-\sin(x + y)}{1 + \sin(x + y)} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If y=cos (sin x ),then (dy)/(dx) =

If y=sqrt(cos x+y), then (dy)/(dx)=

If : sin(x+y)+cos(x+y)=log(x+y)," then: "(dy)/(dx)=

If e^(x+y) =cos (x-y) ,then (dy)/(dx)=

If sin y=x cos(a+y), then (dy)/(dx) is equal to (cos^(2)(a+y))/(cos a)( b) (cos a)/(cos^(2)(a+y)) (c) (s in^(2)y)/(cos a) (d)

If y=sin x+cos x then (dy)/(dx) =

If cos (xy) =x+ y ,then (dy)/(dx)=

If y=cos^2x , then find (dy)/(dx) .

If y = cos^(2) x^(3) " then "(dy)/(dx) = ?