Home
Class 12
MATHS
If sqrt(x)+sqrt(y)=sqrt(a)," then "(dy)/...

If `sqrt(x)+sqrt(y)=sqrt(a)," then "(dy)/(dx)=`

A

`sqrt((x)/(y))`

B

`-(y)/(x)`

C

`-sqrt((y)/(x)`

D

`-sqrt(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sqrt{x} + \sqrt{y} = \sqrt{a} \) and we need to find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Rearrange the equation Starting from the equation: \[ \sqrt{x} + \sqrt{y} = \sqrt{a} \] we can isolate \( \sqrt{y} \): \[ \sqrt{y} = \sqrt{a} - \sqrt{x} \] ### Step 2: Differentiate both sides with respect to \( x \) Now we will differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\sqrt{y}) = \frac{d}{dx}(\sqrt{a} - \sqrt{x}) \] ### Step 3: Apply the chain rule Using the chain rule on the left side and the differentiation rules on the right side: \[ \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0 - \frac{1}{2\sqrt{x}} \] ### Step 4: Simplify the equation This simplifies to: \[ \frac{1}{2\sqrt{y}} \frac{dy}{dx} = -\frac{1}{2\sqrt{x}} \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \) by multiplying both sides by \( 2\sqrt{y} \): \[ \frac{dy}{dx} = -\frac{2\sqrt{y}}{2\sqrt{x}} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} \] ### Final Answer Thus, the final result is: \[ \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - I : CHAPTER 11)|19 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

x sqrt(x)+y sqrt(y)=a sqrt(a) then find (dy)/(dx)

"If "sqrt(x)+sqrt(y)=4," then find "(dy)/(dx).

"If "sqrt(x)+sqrt(y)=4," then find "(dy)/(dx).

If y= sqrt (x+ sqrt (x+ sqrt (x))),then (dy)/(dx) =

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx)=

If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to

If y=sqrt(cos x+y), then (dy)/(dx)=

if sqrt(y+x)+sqrt(y-x)=c then find (dy)/(dx)

If y=sqrt(x+sqrt(y+sqrt(x+......,)))"then"(dy)/(dx)=

If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)=